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1 Purcell 2.27 The electrostatic potential at a point on the edge of a disc of radius r and uniform
charge density σ is φ = 4σr. Calculate the energy stored in the electric field of a charged disk of
radius a.

We calculate the total energy by bringing in each infinitesimal ring of charge from infinity and
adding up the energy for each ring. We assume that we have already built up the disc to radius
r. We now bring in a ring of width dr and stick it on the edge. Recall that the energy necessary
to bring in a test charge from infinity to some point is just the potential at that point times the
charge. (This is more or less the definition of the potential.) The potential just outside the disc
where we are packing on the next ring is 4σr. The energy necessary is then

dU = φ(r)dq = (4σr)(2πrdrσ) = 8πσ2r2 dr.

To add up all the rings integrate from 0 to a.

U = 8πσ2
∫ a

0
r2 dr =

8
3
πa3σ2 =

8
3
πa3

(
Q

πa2

)2

=
8Q2

3πa

2 Purcell 2.29 Two nonconducting spherical shells of radius a carry charges of Q and −Q
uniformly distributed over their surfaces. The spheres are brought together until they touch. What
does the electric field look like, both outside and inside the shells? How much work is needed to
move them far apart?

The field of a uniformly charged shell is zero inside the shell and that of a point charge outside.
Outside both shells, we have the field of two point charges. Inside either shell, the field is that of
a single point charge at the center of the other shell.
To find the energy we use the following argument. Consider instead a uniform shell of charge

−Q and a point charge Q a distance r from the center of the shell (but outside it). We know that
outside the shell, the potential due to the shell is just −Q/r, so the energy needed to bring in the
point charge is −Q2/r and the energy needed to move it out is Q2/r. However, this must be the
same energy as that required to move out the shell while keeping the point charge fixed. So we find
that the energy needed to move a shell out to infinity in the field of a point charge is Q2/r. But
since the other shell creates the field of a point charge outside of it, this is also the energy needed
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to separate our two shells.

E =
Q2

2a

If you don’t like this argument, you can integrate a shell distribution times the potential of a point
charge which isn’t too hard and find the same answer.

3 Purcell 2.30 Consider a cube with sides of length b and constant charge density ρ. Denote by
φo the potential at the center of the cube and φ1 the potential at a corner, with zero potential at
inifinity. Determine the ratio φo/φ1.

We imagine another cube with the same charge density but with twice the side length. Let the
potential at the center of this cube be φ′o. The point at the center of this new cube lies at the
corner of each of eight cubes of the original size. Because the potential is additive, we have

φ′o = 8φ1.

We can also use dimensional arguments to find φ′o. We can write

φo = f(Q, s),

where Q is the total charge, s is the side length and the functional form of f depends on the shape
and nature of the distribution. We can now ask for what’s called a scaling law which tells us what
happens if we multiply the variables Q and s by numerical factors while keeping all other details
of the distribution the same. Whatever the functional form of f is, we know it has units of charge
per length, the units of the potential. Fortunately, the only parameters carrying units which enter
into f are Q and s. The only way then to get the right units is if

f(Q, s) ∝ Q

s
.

The function f then satisfies the simple scaling

f(αQ, βs) =
α

β
f(Q, s).

In our case s′ = 2s and because we are keeping the charge density constant, Q′ = ρs′3 = ρ(2s)3 =
8Q. Then

φ′o = f(8Q, 2s) =
8
2
f(Q, s) = 4φo,

4φo = 8φ1,

φo

φ1
= 2.
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4 Purcell 3.1 A spherical conductor A contains two spherical cavities. The total charge on the
conductor is zero. There are point charges qb and qc at the center of each cavity. A considerable
distance r away is another charge qd. What force acts on each of the four objects A, qb, qc, qd?
Which answers, if any, are only approximate, and depend on r being relatively large?

The force on qb and qc is zero. The field inside the spherical cavity is quite independent of
anything outside. A charge −qb is uniformly distributed over the conducting surface to cancel the
field from the point charge. The same happens with qc. This leave an excess charge of qc + qb
on the outside surface of the conductor. If qd were absent, the field outside A would be the
symmetrical, radial field E = |qb + qc|/r2, the same as a point charge because the excess charge
would uniformly distribute itself over the spherical outer surface. The influence of qd will slightly
alter the distribution of the charge on A, but without affecting the total amount. Hence for large
r, the force on qd will be approximately

Fd =
qd(qb + qc)

r2
r̂.

The force on A must be precisely equal and opposite to the force on qd.

5 Purcell 3.9 Two charges q and two charges −q lie at the corners of a square with like charges
opposite one another. Show that there are two equipotential surfaces that are planes. Obtain and
sketch qualitatively the field of a single point charge located symmetrically in the inside corner
formed by bending a metal sheet through a right angle. Which configurations of conducting planes
and point charges can be solved this way and which can’t?

The potential on each of the two lines A and B shown is zero because the contribution at each
point on either line from any charge is cancelled by the opposite charge directly across from it.
Therefore, the field of a point charge in the corner of a bent conductor is the same as the field
from these four point charges. You should be able to see by looking at the first few cases that this
strategy will work any time we divide the space into an even number of wedges. This allows the
contributions to the potential to cancel pairwise. For example, in the picture at right the potential
is zero on lines A and B because all the charges come in equal and opposite pairs. The applicable
angles are θn = 2π/(2n) = π/n, where n is an integer. This would not work for an angle of 120o.
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6 Purcell 3.17 A spherical vacuum capacitor has radius a for the outer sphere. What radius b
should be chosen for the inner spherical conductor to store the greatest amount of electrical energy
subject to the constraint that the electric field strength at the surface of the inner sphere may not
exceed Eo? How much energy can be stored?

We first need the capacitance of this capacitor. Assuming there is a charge Q on the inner shell
and a charge −Q on the outer shell, the field between the shells is

E =
Q

r2
r̂.

The potential difference is

V = −
∫ b

a

Q

r2
dr = Q

(
a− b

ab

)
,

and the capacitance

C = Q/V =
ab

a− b
.

The energy stored by this capacitor is

U =
1
2C

Q2 =
1
2
a− b

ab
Q2.

The energy in the capacitor will depend on how much charge is on it. If we were allowed to put
arbitrary amounts on, the energy would have no maximum. However, for a given b, the maximum
field near the inner sphere gives us the maximum allowed charge. This gives us the maximum
stored energy for a given capacitor.

Eo =
Qmax

b2

Umax =
1
2
a− b

ab
E2

ob
4 =
1
2
ab3 − b4

a
E2

o

Now we want to choose a b to make this as large as possible.

∂Umax

∂b
(bmax) =

1
2
3ab2 − 4b3

a
E2

o = 0

3a− 4bmax = 0

bmax =
3
4
a

The energy is then

Umax =
1
2

a−
(

3
4a

)

a
(

3
4a

) E2
o

(
3
4
a

)4

=
27
512

E2
oa

3.

7 Purcell 3.23 Find the capacitance of a capacitor that consists of two coaxial cylinder of radii a
and b and length L. Assume L� b− a so that end corrections may be neglected. Check your result
in the limmit b− a� a with the formula for the parallel-plate capacitor.
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A cylinder of 2.00 in outer diameter hangs with its axis vertical from one arm of a beam balance.
The lower portion of the hanging cylinder is surrounded by a stationary cylinder with inner diameter
3.00 in. Calculate the magnitude of the force down when the potential difference between the two
cylinders is 5 kV .

The field between charged cylinders is

E =
2λ
r

r̂ =
2Q
rL

r̂,

assuming we have Q on the inside and −Q on the outside. The potential difference is

V =
∫ b

a

2Q
L

dr

r
=
2Q
L
ln
b

a
.

Just arrange your signs so that the capacitance comes out positive.

C =
L

2 ln(b/a)

Let us now consider the general case where the potential difference is being held constant by a
battery while the capacitance is changing. Initially we have charge and energy

Q = CV U =
1
2
CV 2.

After a change in capacitance ∆C,

Q′ = (C +∆C)V = Q+ V∆C U ′ =
1
2
(C +∆C)V 2.

The battery has done work on this system by moving this extra charge across the potential differ-
ence.

Wb = (∆C)V 2

If the change in capacitance is caused by movement of the components, the electric field does work
on the plates or plate.

W = F (∆L)

From conservation of energy we have

U +Wb = U ′ +W,

(∆C)V 2 =
1
2
(∆C)V 2 +W,

W = F (∆L) =
1
2
(∆C)V 2,

F =
1
2
V 2∂C

∂L
.

In our case we have

F =
1
2
V 2 1
2 ln(b/a)

=
1
2
(16.7 statvolts)2

2 ln(3/2)
= 172 dynes.
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8 Purcell 3.24 Two parallel plates are connected by a wire. Let one plate coincide with the xz plane
and the other with the plane y = s. The distance s is much smaller than the lateral dimensions of
the plates. A point charge Q is located between the plates at y = b. What is the magnitude of the
total surface charge on the inner surface of each plate?

The total induced charge is −Q. We need to find the fraction of induced charge on either
conductor. For this we may notice that the fraction of induced charge on both planes will be the
same for any distribution located at y = b because we may view it as the superposition of many
little point charges. So we want to consider the simplest possible case which is a uniformly charged
plane. (Once again, we are ignoring edge effects.) Using a Gaussian pillbox with its left face inside
the left plate and its right face at y, where 0 < y < b, the field in the left region is

El = 4πσ1ŷ.

Similarly, the field in the right region is

Er = −4πσ2ŷ.

Since the two conductors are connected by a wire, they are at the same potential so the line integral
from the middle to the left and right should be the same.

4πσ1(−b) = −4πσ2(s− b)

σ2

σ1
=

b

s− b

Now switch back to the original problem.

Q2

Q1
=

b

s− b
Q1 +Q2 = −Q

Q1 = −s− b

s
Q Q2 = − b

s
Q
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