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SOLUTION TO PROBLEM SET 2
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. This problem is a simple application of the
formula for centripetal acceleration. An object
moving at speed v in a circular path of radius r
has a centripetal acceleration directed inward:

acentripetal = −v2

r
r̂

If we know instead the angular velocity ω of the
object, we can use it instead. Remember that an
object with angular velocity ω going on a circu-
lar path of radius r has speed v = ωr. Plugging
into the above formula, we get

acentripetal = −ω2rr̂

(a.) Standing at 45◦ latitude, the distance to the
axis of the earth’s rotation is just rearth/

√
2. This

is the radius to be used. The speed is just the an-
gular velocity times this radius. The angular ve-
locity is easy to guess, it’s 2π/day. Using rearth =
6370 km, the distance to the axis is 4504 km.

Plugging in these numbers, the acceleration
is 0.0238 m/sec2. This is 2.4 × 10−3g, a very
small acceleration compared to the acceleration
of gravity.

(b.) This is the same sort of calculation, except
that the angular velocity is now 2π/28 days. The
mean radius of the moon’s orbit is 3.84× 108m.
The centripetal acceleration is 0.0026 m/sec2,
which is 2.6× 10−4g.

(c.) This time you are given the speed, not
the angular velocity, so we use the first formula.
The acceleration is 8.0 × 1022 m/sec2. This is
8.2× 1021g!

(d.) A point on the rim of a wheel is moving
at the same speed that the wheel is rolling. The
radius is 13 inches, and the velocity is 25 mph,
so we need to convert these units. The official
definition of the inch is 1 inch = 2.54 cm. This
gives 1610 meters per mile. The acceleration is
then 379 m/sec2, which is 38.6g.

2. K&K problem 1.17

In plane polar coordinates the velocity and
acceleration are given by

v = ṙr̂+ rθ̇θ̂

a = (r̈ − rθ̇2)r̂+ (rθ̈ + 2ṙθ̇)θ̂

We know all of these things, so we can get a
formula for the magnitudes of v and a, given
that both the radial and angular velocities are
constant (r̈ = θ̈ = 0).

v =
√

ṙ2 + r2θ̇2

a =
√

r2θ̇4 + 4ṙ2θ̇2

Plugging into these, we find that v =
√
52 m/sec

and a = 20 m/sec2.

3. K&K problem 1.20

The motion of a particle is given by r = Aθ,
θ = αt2/2 and A = (1/π) m/rad. The sketch of
this motion should look something like this:
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(b.) We plug the expression for θ into r to get
r = Aαt2/2. From these we can get all of the
necessary derivatives. ṙ = Aαt, r̈ = Aα, θ̇ = αt,
and θ̈ = α.

Using the equation for radial acceleration,
we find an expression for points where the radial
acceleration is zero.

ar = r̈ − rθ̇2 = 0 ⇒ r̈ = rθ̇2

Plugging in the expressions for the r and θ vari-
ables, we find that Aα = Aα(αt2)2/2. Using
the fact that θ = αt2/2, we arrive at the result
θ = 1/

√
2.

(c.) For this part, we set the magnitudes of the
radial and tangential accelerations equal to each
other and solve for the angle. Plugging into the
formulas for the two accelerations, we get

ar = r̈ − rθ̇2

aθ = rθ̈ + 2ṙθ̇

Plugging into the various terms, we get∣∣∣∣Aα − 1
2
Aα3t4

∣∣∣∣ =
∣∣∣∣12Aα2t2 + 2Aα2t2

∣∣∣∣
Plugging in the expression for θ where we can,
we get ∣∣1− 2θ2

∣∣ = |5θ|
When the dust settles, there will be separate re-
sults depending on the value of θ. The final
results are

θ <
1√
2
: θ =

√
33− 5
4

θ >
1√
2
: θ =

√
33 + 5
4

4. Two objects are dropped from a building at
times t = 0 and t = t0. The distance that the
first has fallen as a function of time is just d1 =
gt2/2. The distance that the second has fallen is
d2 = g(t − t0)2/2. When t > t0, the separation
between them is l = d1 − d2. Thus we get

l =
1
2
gt2 − 1

2
g(t2 − 2tt0 + t20) = gtt0 − 1

2
gt20

Solving for t as a function of l, we get

t =
l

gt0
+

t0
2

When l < gt20/2 this time is negative. This does
have a sensible interpretation, unlike the nega-
tive time in the airplane problem of the previous
problem set. Think of the problem as if we
wanted to throw both objects at the same time,
but still have the initial conditions given. At t =
0, when we drop the first object, from where do
we have to throw the other object? The answer
is we want to throw upwards from below in such
a way that at time t = t0, the ball has reached
the peak of its path and is momentarily at rest
at the point where the first ball was dropped.
During the time between t = 0 and t = t0, the
separation between the objects can be negative,
meaning that the second one is below the first.

(b.) In this part we want to calculate the op-
timal value of t0 so that the separation reaches
some value l0 at the earliest time possible. In
other words, we want to minimize the function
t(t0, l0). First we take the derivative and set it
to zero to find local extrema.

dt

dt0
=

1
2
− l0

gt20
= 0 ⇒ t0 =

√
2l0
g

Notice that this is just the time that it takes the
first object to fall a distance l0. The endpoints
here are t0 = 0, where the separation remains
at l = 0 forever and t0 = ∞, where the time to
reach a separation of l0 is also infinity. Thus
this best time to drop it is at t0 =

√
2l0/g. This

means that the best thing to do is to drop the
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second object when the first object has already
fallen a distance l0.

5. K&K problem 1.21

This is another maximization problem. We
want to know the optimal angle to throw a ball
down a hill with slope angle φ. Splitting this
into the x and y directions is the easiest way
to do the problem. First put the origin at the
top of the hill. If the ball is thrown up at an
angle θ with speed v, the initial velocities are
vx = v cos θ and vy = v sin θ.

Taking into account the acceleration of gravity,
the positions are given by

x = vt cos θ

y = vt sin θ − 1
2
gt2

We need to know where the ground is in these
coordinates. At a position x on the ground, the
y coordinate is given by yground = −x tanφ. We
can now find the time at which the ball hits the
ground. Plugging into the equation for distance
traveled in y, we get

yground = −x tanφ = vt sin θ − 1
2
gt2

⇒ v sin θ − 1
2
gt = −v cos θ tanφ

This gives the time at which the ball hits the
ground:

t =
2v
g
(sin θ + cos θ tanφ)

We now plug this time into the equation for
distance traveled in the x direction, giving the
distance that the ball traveled:

x =
2v2

g
(cos θ sin θ + cos2 θ tanφ)

=
2v2

g
(
1
2
sin 2θ + cos2 θ tanφ)

Treating this as a function of θ, we can maxi-
mize the range by differentiating with respect to
θ. Note that the endpoints in this problem are
not interesting. Throwing the ball straight up
(θ = 90◦) and throwing it at an angle −φ both
result in the ball traveling no distance in the x
direction.

dx

dθ
=

2v2

g
(cos (2θ)− 2 cos θ sin θ tanφ)

=
2v2

g
(cos (2θ)− sin (2θ) tanφ) = 0

Solving for θ, we get

cos(2θ) = sin(2θ) tanφ ⇒ cot(2θ) = tanφ

Remembering that cotα = tan(π/2− α), we see
the final result:

tan
(π

2
− 2θ

)
= tanφ ⇒ θ =

π

4
− φ

2

Note that on a level surface, when φ = 0, the
optimal angle is 45◦, as you might already know.

6. K&K problem 2.1

This is the first problem where you are asked
to consider the forces causing acceleration. The
force on a 5 kg mass is given by F = 4t2x̂ − 3tŷ
Newtons. Apply Newton’s second law of mo-
tion, namely F = ma, to get the acceleration,
a = (4t2/5)x̂ − (3t/5)ŷm/sec.

(a.) We can get velocity from acceleration by
integrating

v(t)− v(t0) =
∫ t

t0

a(t′)dt′

Plugging the acceleration we just determined
into this integral, and knowing that the velocity
at t = 0 is zero, we get the velocity as a function
of time:

v(t) =
4
15

t3x̂ − 3
10

t2ŷ m/sec
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(b.) We get the position by integrating again:

r(t)− r(t0) =
∫ t

t0

v(t′)dt′

Applying this to the result of part (a.), and re-
membering that at t = 0 the mass is at the origin
so r(0) = 0, we get the position as a function of
time:

r(t) =
1
15

t4x̂ − 1
10

t3ŷ m

(c.) Now all that is left is to take the cross prod-
uct of the position with the velocity. We find
that

r × v =
(
− 3
150

t6 +
4
150

t6
)

ẑ =
t6

150
ẑ

7. This problem asks you to consider two blocks
sliding on a table together. The larger block,
with mass M , has five forces acting on it. They
are F x̂, the applied force, a contact force that
I will call −CM x̂, the force of gravity −gŷ, the
normal force N ŷ, and the force of friction. Be-
cause there is no acceleration in the ŷ direction,
we can easily find that N = Mg, so that there
is no net force in the ŷ direction. From the nor-
mal force we can determine the force of friction.
An object that is sliding with friction along a
surface is acted upon by a force opposing the di-
rection of motion with magnitude µN(= µMg),
where µ is the coefficient of sliding friction. We
now can write an expression for the acceleration
of the large block in the x̂ direction

ax =
Fx

M
=

F

M
− CM

M
− µg

There are two unknowns here, ax and CM . We
need another equation. Luckily, there is another
block that we can write equations about. The
small block, having mass m, is affected by four
forces. They are the contact force, the force of
gravity, the normal force, and the force of fric-
tion. The contact force is exactly opposite to
the contact force on the first block. This is due
to Newton’s third law of motion, which states
that every force has an equal and opposite force.
Thus Cm = CM and the contact force is CM x̂.
The force of gravity is just −mgŷ, the normal
force exactly opposes gravity as before, +mgŷ,
and the force of friction is again −µmg. We
get the equation of motion for the second block,
noticing that acceleration of the second block is
the same as for the first block because they are
moving together:

ax =
CM

m
− µg

We are only concerned with CM here, so we can
simplify the solution of these equations. Subtract
the second equation from the first to get

F

M
− CM

(
1
M

+
1
m

)
= 0

We can now solve for CM in terms of F :

CM = F

(
m

M +m

)

If we follow the same procedure when the force
is acting on the second block, we get a very simi-
lar answer, but the mass in the numerator is the
larger mass

CM = F

(
M

M +m

)

This is a factor of M/m larger, which is what
we expect. The only force pushing on the sec-
ond block in each case is the contact force,
and the acceleration doesn’t depend on which
side we push the combined system from. The
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force of friction acts in proportion to the mass
in this case, so it does not affect this argu-
ment. It can be thought of as a force that
acts on the combined system, not on the indi-
vidual blocks, because it is proportional to the
mass. Notice that neither of these expressions
depend on the value of µ, which would indicate
that the friction was affecting the contact force.

8. K&K problem 2.5

This is the first pulley problem, and it won’t
be the last. The pulley is massless and friction-
less, and supports two masses M and m by a
massless rope connecting them. The first thing
to notice about this problem is that the ten-
sion in the rope must be the same on both sides
of the pulley. If the different sides had differ-
ent tensions, there would be a tendency to cause
an angular acceleration in the pulley. Since it
is massless, this acceleration would be infinite,
which is unphysical, so the tensions must be
equal. You will see this in more detail when you
do rigid body motion later this term.

The second thing to notice is that the more
massive block will fall and the less massive block
will rise, and their accelerations will be the same,
but in opposite directions. This just means that
the rope isn’t stretching. For this problem I will
set “down” to be the positive direction. The
equation for the larger mass is

Ma = Mg − T ⇒ T = M(g − a)

Using the expression for tension derived in the
above equation, the equation for the smaller
mass is the following:

ma = −mg + T ⇒ m(a+ g) = M(g − a)

Solving for the acceleration,

a = g

(
M − m

M +m

)

The larger mass accelerates with magnitude a
downward. The tension is found by plugging the
acceleration into either of the starting equations

T = Mg − Mg

(
M − m

M +m

)
= g

(
2Mm

M +m

)

9. Nope, this isn’t the last pulley problem either.
Again, the pulley and cords are massless and the
pulley is frictionless. A force F is applied up-
ward, and various things will happen depending
on what F is. The first thing to notice is that the
pulley is massless. This means that the tensions
on the two ropes must be equal, otherwise a finite
angular force would be applied to a massless ob-
ject, which again is unphysical. The second thing
to notice is that the upward force must exactly
balance the sum of the tensions. If this weren’t
the case, there would be a net force applied to a
massless object. This can’t happen, so to balance
the forces we just need F = 2T . With these two
points in mind, we can do the rest of the problem.

(a.) The boundary between regimes (i) and (ii)
is where the lighter block lifts off the ground.
Consider the forces on this block. They are grav-
ity −mg, the tension T , and the normal force N .
The equation of motion is ma = T +N −mg. At
the boundary between regimes (i) and (ii) when
the block just barely can be lifted upward, the
normal force N is zero, but so is the accelera-
tion. This gives us T = mg. We know also that
T = F/2, so the minimum force to lift the lighter
block is F = 2mg. This is just twice the weight
of the lighter block, which we expect because the
force applied gets divided in half by the pulley.
The boundary between regimes (ii) and (iii) is
found in a similar way. The equation of motion
is T + N − Mg = Ma. Again both a and N are
zero at the transition point, so T = Mg, which
gives the force F = 2Mg. The final results are

regime(i) {F < 2mg}
regime(ii) {2mg < F < 2Mg}
regime(iii) {2Mg < F}
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(b.) Now we want to find the accelerations
for regimes (ii) and (iii). This is easy be-
cause we have already determined the equations
of motion. For regime (ii), only the lighter
block accelerates. The equation of motion is
F/2− mg = ma. This gives the result

regime (ii) aM = 0

am =
F

2m
− g

In regime (iii), the equation of motion of the
first block is the same, so we get the same result
for the acceleration. The equation of motion of
the larger block is F/2− Mg = Ma. These give
the results

regime (iii) aM =
F

2M
− g

am =
F

2m
− g

10. K&K problem 2.6

The cement mixer’s drum has a radius R.
We want to know how fast it can rotate so that
the material will not stick to the walls all of the
time. We just need to figure out at what speed
the drum can oppose gravity all of the time. For
a glob of material of mass m, the worst case is
at the top. To remain in contact with the drum,
at that point the glob must feel a downward
force from the drum that is positive. In addition
it feels the downward force mg due to gravity.
So the total downward force on it must be at
least mg. Now, what acceleration accompanies
this force? We don’t want the glob to leave the
drum, so its radial velocity must remain equal
to zero. The only remaining possible downward
acceleration is the centripetal acceleration due
to the circular motion. This is ω2R. Equating
the mass m times this acceleration to the total
downward force, we conclude that mω2R ≥ mg,
or ω ≥ √

g/R. For the material to not always
stick, we need the final result

ω <

√
g

R


