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University of California, Berkeley
Physics H7A Fall 1998 (Strovink)

SOLUTION TO EXAMINATION 1

1. In spherical polar coordinates, take Sapporo
and Portland to be at (r, θ, φ) = (R, π/4, 0) = rS

and (R, π/4, π/2) = rP respectively.

(a.) Here the course is one quarter of a circle
with its center on the earth’s axis of rotation at
a point above the earth’s center. This circle has
radius R sin θ = R

√
2/2. The distance traveled,

s, is one quarter of its circumference:

s =
1
4
2π

R
√
2

2
=

πR
√
2
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.

(b.) The Cartesian coordinates of rS and rP are

rS = R(
√
2/2, 0,

√
2/2)

rP = R(0,
√
2/2,

√
2/2) .

The angle between rS and rP is

ψSP =
arccos (rS · rP )

R2

= arccos (1/2) = π/3 .

To calculate the minimum distance between Sap-
poro and Portland along the surface of the earth,
we bisect the earth using a plane that contains
these two cities as well as the earth’s center. The
intersection of the earth with the bisecting plane
is a circle with its origin at the center of the
earth, having a circumference 2πR. Since both
rS and rP lie in this plane, the course consists
of the fraction ψSP /2π of this circumference.
Therefore the distance traveled is

s =
ψSP

2π
2πR =

π/3
2π

2πR =
πR
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(This is 0.333/0.354 ≈ 94% of the length of the
“due east” course.)

2. Let θ = arctan (5/12) be the angle with which
the plane is inclined. Since there is no acceler-
ation (or motion) perpendicular to that plane,
the normal force N on block m must be equal to

the normal component of the gravitational force
on block m, or

N = mg cos θ .

The frictional force Ff then will be

Ff = µN = µmg cos θ

opposite to the motion.

(a.) Along the motion, the system consisting
of mass m plus mass m/13 experiences a force
due to gravity, consisting of the sum of the force
mg sin θ on mass m and mg/13 on mass m/13. If
the velocity of the system is constant, i.e. there is
no acceleration, the gravitational and frictional
forces must balance:

µmg cos θ = mg(sin θ + 1/13)

µ =
5/13 + 1/13

12/13
= 1/2 .

(b.) After the hanging block hits the table,
the (massless) rope goes limp and has no fur-
ther effect on the sliding block. Opposite to the
direction of motion, the net force on m is

f = µmg cos θ − mg sin θ

= mg
(1
2
12
13

− 5
13

)
=

mg

13
,

producing a constant acceleration a = g/13 op-
posite to the motion. The block decelerates for
a time t = v0/a until it comes to rest. During
that time, the distance traveled is

s = v0t − 1
2
at2 =

v2
0

a
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2
v2
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a
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0
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2

v2
0

g
.

3. Two crumpled paper objects have the same
force (proportional to vα) due to air resistance,
but different masses 2m and m.

(a.) Immediately after the two objects are re-
leased from rest, their velocity must still be
negligible; otherwise they would have experi-
enced infinite acceleration. Likewise, the force of
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air resistance, proportional to vα, is negligible at
that time. So the only nonnegligible force act-
ing on them is the force of gravity, 2mg and mg
respectively, yielding an acceleration g in either
case. So the ratio of accelerations is R = 1.

(b.) After the objects reach terminal velocity
(v2 and v1 respectively), and they no longer are
accelerating, the forces due to air resistance and
gravity must cancel:

2mg = Kvα
2

mg = Kvα
1 ,

where K is the unknown constant of proportion-
ality. Taking the ratio of these two equations,

v2 = 21/αv1 .

The “long time” after the objects are dropped
is very large compared to the “very soon” time
at which they reach terminal velocity. So, to an
excellent approximation, the distance they drop
during the “long time” is proportional to the
terminal velocity. Since mass 2m drops a factor√
2 further,

v2 =
√
2v1 .

Comparing this to the previous equation,

α = 2 .

(c.) After gravity is turned off, the force of
air resistance Kv2 accelerates the falling object
opposite to its direction of motion:

m
dv

dt
= −Kv2 .

Dividing through by v2, multiplying through by
dt, and integrating,

1
v
=

K

m
t + C

where C is a constant of integration that will
be negligible with respect to Kt/m when t is
sufficiently large. Therefore, asymptotically as
t → ∞, the downward velocity will be inversely
proportional to t. Integrating this statement, the
asymptotic distance traveled will increase as ln t,

which is arbitrarily large when t is arbitrarily
large. Therefore the distance fallen will be un-
bounded. [This result is similar to that obtained
in Problem Set 3, Problem 6 (K&K 2.35).]

4. Since the ice is horizontal and frictionless, it
cannot exert any force on the barbell in the x̂
direction, either as the result of a contact force
or a frictional force. Therefore the x coordinate
xCM of the barbell’s center of mass, initially at
rest at x = 0, must remain at x = 0. When mass
m hits the ice and the barbell is horizontal,

0 = XCM =
MxM +m(xM + h)

M +m

⇒ xM = −h
m

M +m
.


