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PROBLEM SET 9

52. Irradiance and Jones vectors.
Consider two transverse plane waves A and B
that move in vacuum and are combined together
(i.e. by a Michelson interferometer). The beams
have complex electric fields

(
EA

0x

EA
0y

)
=

| �EA
0 |√|α|2 + |β|2

(
α
β

)

(
EB

0x

EB
0y

)
=

| �EB
0 |√|γ|2 + |δ|2

(
γ
δ

)
.

Express the combined irradiance

IA+B ≡ 〈�SA+B · ẑ〉 ,

where �S is the Poynting vector and 〈 〉 is a time
average, as a function of the complex constants
α, β, γ, δ, and the uncombined irradiances IA

and IB of the individual beams.

53.
(a.)
A set of N ideal linear polarizers L1 . . .LN

is arranged so that x̂ polarized light passes
through them in ascending order. The trans-
mission axis of polarizer n is oriented along
(x̂ cos φn+ŷ sinφn), where φn = πn

2N . In the limit
N → ∞, deduce the Jones matrix for this set.
(b.)
Consider a twisted nematic cell, as found in
an LCD display. It functions as a rotator
(Pedrotti×2 Eq. (14-21)). Show that if the
rotator parameter β = π

2 , the twisted cell will
have the same effect on x̂ polarized light as does
the set of polarizers described in (a.).
(c.)
Do the devices in (a.) and (b.) also have equiv-
alent effect on ŷ polarized light? Explain.

54.
Apart from an experimentally irrelevant overall
phase, an ideal wave plate of thickness D with
phase retardation difference

δ ≡ (nx − ny)
ωD

c
,

having its slow axis along x̂, is represented by
the Jones matrix

MW(φ = 0) =
(

eiδ/2 0
0 e−iδ/2

)
.

If instead the wave plate has its slow axis along
(x̂ cos φ + ŷ sin φ), show that it is represented by
the general Jones matrix

MW(φ) =(
cos δ

2 + i sin δ
2 cos 2φ i sin δ

2 sin 2φ

i sin δ
2 sin 2φ cos δ

2 − i sin δ
2 cos 2φ

)

Note that δ = π
2 for a quarter-wave plate (qwp)

and δ = π for a half-wave plate (hwp), which
is equivalent to two qwps. Note also that, like
the general Jones matrix ML(φ) for the ideal
linear polarizer (Pedrotti×2 Eq. 14-15), MW(φ)
is symmetric and invariant to the transforma-
tion φ → φ + π. However, unlike ML(φ), MW(φ)
is also unitary (M−1 = M†) with unit determi-
nant, preserving the irradiance.

55.
Use the result of the previous problem to do
Pedrotti×2 Problem 14-11. To get their result
you must assume, as they do [Eqs. (14-17)-(14-
20)], that the wave plate’s slow axis lies along
either the x or y axis.

56.
(a.)
Do Pedrotti×2 Problem 14-17. Does their Jones
matrix really convert any state of incident po-
larization to a finite irradiance of RH polarized
light? Explain.
(b.)
Devise a combination of ideal wave plate(s) and
polarizer(s) that, within a multiplicative con-
stant, yields the Jones matrix of part (a.). Sup-
ply the absolute magnitude of this constant.
Congratulations! You have invented an ideal ho-
mogeneous right-hand circular polarizer.
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(c.)
Show that the result of part (b.) functions also
as a right-hand circular analyzer, i.e. it fully
transmits RH circularly polarized light and fully
absorbs LH circularly polarized light.

57. Stokes vectors #1.
Using the standard definition of the complex
electric field �E0,

�E(z, t) = Re
(
�E0 exp (i(k̃z − ωt))

)
,

consider the case in which the phase difference
between its x and y components

ε(t) = arg E0x − arg E0y

is not necessarily fixed, as would be the case
for fully polarized light, but rather is allowed to
vary with time – slowly with respect to ω−1, but
rapidly with respect to experimenters’ ability to
measure it. The Stokes vector S is defined by
the real elements

S ≡

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠ ≡ Re k̃

2µω

⎛
⎜⎝

|E0x|2 + |E0y|2
|E0x|2 − |E0y|2
〈2 Re(E0xE∗

0y)〉
〈2 Im(E0xE∗

0y)〉

⎞
⎟⎠ ,

where 〈〉 denotes the time average.
(a.)
Show that

S =
Re k̃

2µω

⎛
⎜⎝

|E0x|2 + |E0y|2
|E0x|2 − |E0y|2

〈2|E0x||E0y| cos ε〉
〈2|E0x||E0y| sin ε〉

⎞
⎟⎠ .

(b.)
The normalized Stokes vector S̄ is defined to be
the usual Stokes vector divided by S0 , so that its
topmost element is unity. Consider a fully polar-
ized beam in an arbitrary state of polarization
described by the general Jones vector

J =
1√|α|2 + |β|2

(
α
β

)
.

Show that the normalized Stokes vector for this
beam is

S̄ =
1

|α|2 + |β|2

⎛
⎜⎝

|α|2 + |β|2
|α|2 − |β|2
2 Re(αβ∗)
2 Im(αβ∗)

⎞
⎟⎠ .

(c.)
Using the result of (b.) and your knowledge of
Jones vectors, show that fully linearly polarized
beams in the x̂, ŷ, 1√

2
(x̂ + ŷ), and 1√

2
(x̂ − ŷ)

directions are described, respectively, by the nor-
malized Stokes vectors

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠

⎛
⎜⎝

1
0
−1
0

⎞
⎟⎠ ,

and that fully circularly RH and LH polarized
beams are described, respectively, by the nor-
malized Stokes vectors

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠

⎛
⎜⎝

1
0
0
−1

⎞
⎟⎠ .

58. Stokes vectors #2.
Please refer to the notation and results of the
previous problem.
(a.)
For fully polarized (“p”) light (ε fixed), show that

S2
1 + S2

2 + S2
3 = S2

0 .

(b.)
Natural (“n”) light is completely unpolarized.
It has |E0x| = |E0y|, but the phases of both
E0x and E0y vary randomly with time so that
〈cos ε〉 = 〈sin ε〉 = 0. For natural light, show
(conversely to (a.)) that

S1 = S2 = S3 = 0 .

59. Stokes vectors #3.
Please refer to the notation and results of the
previous two problems. Consider four devices:
(A) a grey filter passing half the incident irra-
diance; (B) an x̂ polarizer; (C) an 1√

2
(x̂ + ŷ)

polarizer; (D) a RH circular analyzer. After
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passing through (only) device X, the beam has
irradiance IX. It can be shown that

S = 2

⎛
⎜⎝

IA

IB − IA

IC − IA

ID − IA

⎞
⎟⎠ .

Therefore, a Stokes vector can be completely de-
termined by measuring only irradiances. This re-
veals one extent to which Stokes “vectors” satisfy
vector properties. The additive property nor-
mally associated with a vector, Stot = SA + SB

for two beams A and B, holds only if their irradi-
ances rather than their amplitudes add, i.e. only
if the two beams are completely mutually inco-
herent. This is a total contrast to Jones vectors,
which can be defined only for fully polarized
beams and can be added only if the two beams
are completely mutually coherent.
(a.)
Using the additive property for Stokes vectors in
mutually incoherent beams, show that an arbi-
trary beam

S =

⎛
⎜⎝

S0

S1

S2

S3

⎞
⎟⎠

is the (necessarily incoherent) superposition of a
fully polarized beam p and a natural-light beam
n. Show this by specifying the elements of the
constituent Stokes vectors Sp and Sn in terms of
the elements of the overall Stokes vector S.
(b.)
Define the degree of polarization V by

V ≡ Ip

Ip + In
.

For the above arbitrary beam, show that

V =

√
S2

1 + S2
2 + S2

3

S0
.

Appendix: Mueller matrices
The Mueller matrices manipulate Stokes vectors
in the same way that Jones matrices manipu-
late Jones vectors. For an x̂ polarizer and for

a 1√
2
(x̂ + ŷ) polarizer, the Mueller matrices are,

respectively,

1
2

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎠ .

The Mueller matrices for a ŷ polarizer and for a
1√
2
(x̂ − ŷ) polarizer are, respectively,

1
2

⎛
⎜⎝

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎞
⎟⎠ .

For a qwp with slow axis along x and for a
homogeneous right-hand circular polarizer, the
Mueller matrices are, respectively,

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠ .

The Mueller matrices for a qwp with slow axis
along y and for a homogeneous left-hand circular
polarizer are, respectively,

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞
⎟⎠ .
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