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PROBLEM SET 8

43.
This problem is omitted intentionally.

44.
Griffiths Problem 11.15.

45.
Start from the expression derived in class for the
energy radiated by an accelerating point charge
per steradian per unit of retarded time t′:

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c

∣∣R̂ × [
(R̂ − �β) × �̇

β
]∣∣2

(1 − R̂ · �β)5
.

Consider synchrotron radiation by a particle of
charge q moving in a circular orbit of radius b in
a coordinate system where

β̂ = ẑ

ˆ̇
β = x̂ ,

i.e. x̂ points toward the center of the circle and
ẑ points along its circumference in the particle’s
direction of motion. Define

R̂ ≡ (nx, ny, nz) ,

where n̂ is a unit vector extending from the par-
ticle in an arbitrary direction towards which an
element of radiation is emitted.
(a.)
Show that

R̂ × [
(R̂ − �β) × ˆ̇

β
]

= n̂nx − x̂ − βn̂ × ŷ .

(b.)
Using this result, show that

∣∣R̂×[
(R̂−�β)× ˆ̇

β
]∣∣2 = 1−2βnz +β2n2

z−(1−β2)n2
x

(c.)
Consider a set of spherical polar coordinates cen-
tered at the particle (not at the center of the
beam circle). Taking θ to be the polar angle of

n̂ relative to ẑ, and φ to be its azimuth about ẑ,
express nx and nz in terms of θ and φ.
(d.)
Using the results of (b.) and (c.), show that

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c
×

× β̇2

(1 − β cos θ)3
(
1 − sin2 θ cos2 φ

γ2(1 − β cos θ)2
)

.

46.
Consider the final result of the previous prob-
lem.
(a.)
Perform the integration over dΩ = d(cos θ) dφ to
show that

4πε0
dW

dt′
=

2
3c3

(qβ̇c)2γ4 .

[Note that (qβ̇c)2 is equivalent to p̈2, where p is
the electric dipole moment of the point charge
relative to the origin. Therefore this result is the
same as the (nonrelativistic) Larmor formula,
except for the additional factor γ4.]
(b.)
In terms of the |momentum| P of the point
charge and its rest mass m, show that

4πε0
dW

dt′
=

2q2

3c3

P 4

m4b2
,

and thus that the power lost to synchrotron ra-
diation depends on the fourth power of P , the
inverse fourth power of m (making it usually
negligible for all but electrons), and the inverse
square of b.
(c.)
Suppose that you use an electron synchrotron
that taxpayers can afford. It circulates highly
relativistic electrons with β ≈ 1. You want to
build a new synchrotron with the same beam
current, the same power lost to synchrotron ra-
diation, but twice the beam momentum. Show
that the radius b of the new synchrotron must
increase by a factor of 16.
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47.
A free-electron laser consists of a beam of elec-
trons (with constant velocity βc) passing through
a structure known as an undulator. (Stronger
versions of these structures called wigglers are
used also in sections of a circular electron syn-
chrotron such as the ALS.) Take the beam di-
rection to be ẑ. Consider an alternating set of
magnets (for compactness, these are often per-
manent magnets, made of samarium cobalt as
developed at LBL by the late Klaus Halbach).
With a full period ∆z, they produce a strong
magnetic field that points alternately in the +x̂
and −x̂ directions. For this undulator we (un-
realistically) assume that this magnetic field is
weak enough so that, as seen in a frame moving
with velocity βcẑ, the electrons’ velocity relative
to that frame is � c.
(a.)
In the rest frame S ′ of the electron, with what
fundamental angular frequency ω′ does the mag-
netic field from the undulator appear to oscil-
late?
(b.)
In S ′, the oscillating electron produces elec-
tromagnetic radiation with angular frequency
ω′. Applying the relativistic Doppler shift to
(“forward”) radiation emitted along the beam
direction, what angular frequency ω does that
radiation have in the laboratory frame?
(c.)
Express λ, the wavelength of the forward radia-
tion, as a multiple of ∆z.
(d.)
At LBL’s ALS, using an alternating set of mag-
nets with ∆z = 10 cm, an experimenter wishes
to study the effect upon condensed-matter sam-
ples of a soft X-ray beam of wavelength 5 nm.
Use this information to estimate the ALS beam
energy (in GeV).

48.
This problem is omitted intentionally.

49.
(a.)
This part is omitted intentionally.
(b.)
This part is omitted intentionally.

(c.)
In a more microscopic and detailed treatment of
plane EM waves propagating along ẑ in materi-
als that potentially are conducting, one assumes
that N valence electrons per m3 having charge
−e and mass m move in a potential well with
effective spring constant mω2

0 and damping co-
efficient Γm. One defines the complex dielectric
constant ε̃ via

ε̃

ε0
− 1 ≡ P̃

ε0Ẽ
,

where P̃ is the complex polarization, defined by

�P (z, t) = Re
(
�̃P exp

(
i(k̃z − ωt)

))
,

in analogy to complex �̃E and �̃B. For not-too-
dense media in which the electric field felt by the
electron is approximately the same as the aver-
age field, it is straightforward to solve the force
equation for these oscillating electrons and de-
termine the complex polarization P̃ they create.
One obtains

ε̃

ε0
− 1 =

ω2
p

ω2
0 − ω2 − iΓω

,

where the plasma frequency2 is

ω2
p ≡ Ne2

mε0
.

The complex dielectric constant ε̃ includes the
effects of all electrons (free and bound). It is re-
lated to the ordinary dielectric constant ε (which
includes the effects only of bound electrons) by

ε̃ = ε(1 + iγ) =
k̃2

µω2
,

where as usual γ = σ
εω . Represent a good con-

ductor by ω0 = 0 (unbound) and Γ � ω (over-
damped). Using these results, show that the
conductivity σ is approximately

σ ≈ ε0ω
2
p

Γ
,
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i.e. measuring the low-frequency conductivity is
a simple way to determine the damping coeffi-
cient.
(d.)
Represent the ionosphere by ω0 = 0 (unbound),
and Γ � ω (underdamped). Specialize to AM
radio waves, for which ω < ωp. Show that the
amplitude reflection coefficient |R̃| ≈ 1, i.e. that
AM radio waves are nearly fully reflected by the
ionosphere. (At dusk, the ionosphere drops to
sufficiently low altitude that reflection off it en-
ables AM stations hundreds of miles away to be
received.)

50.
This problem is omitted intentionally.

51. Jones vectors.
For a plane transverse wave propagating in the ẑ
direction through a (not necessarily insulating)
material with constant ε and µ, a (co)sinusoidal
solution is represented by

�E(�r, t) = Re
(

�E0(x, y) ei(k̃z−ωt)
)

�H(�r, t) = Re
(

�H0(x, y) ei(k̃z−ωt)
)

,

where k̃ is the (not necessarily real) “wave vec-
tor” – here a scalar because we know it is
directed along ẑ. Faraday’s law causes �H0 to be
completely determined by �E0:

�H0 ≡ Z̃−1ẑ × �E0

=
k̃

µω
ẑ × �E0 ,

so we focus on �E0 as the sole independent vari-
able. For a transverse wave �E0 has no z compo-
nent. Here we assume that the phase relationship
between E0x and E0y is fixed – the wave is fully

polarized. Then �E0 is a complex transverse vec-
tor, completely specified by four components. In
the Jones convention, all information carried by
�E0 except for its magnitude is written as a 2× 1

column vector with the x component on top:

�E0 =
(

E0x

E0y

)

≡ 1√|α2| + |β2|

(
α
β

)
| �E0|

≡ �J | �E0| ,

where �J is the Jones vector. Jones vectors are
defined only within an overall phase (because
the absolute phase of an optical-frequency EM
wave can’t conveniently be measured); therefore
one has the freedom to set α equal to unity (un-
less it vanishes, in which case β is set to unity).
The above form involving the complex constants
α and β is a general Jones vector, corresponding
to elliptical polarization. More common Jones
vectors are

(
1
0

) (
0
1

)
1√
2

(
1
−i

)
1√
2

(
1
i

)
,

corresponding, respectively, to linear x, linear y,
RH circular, and LH circular polarization.
(a.)
At z = 0, show (counterintuitively!) that the
electric field vector for RH polarized light pre-
cesses clockwise around ẑ, i.e. it precesses ac-
cording to the LH rule.
(b.)
Suppose that a particular state of elliptical po-
larization has nonvanishing x and y electric field
components. Then, within an arbitrary overall
phase, it may be represented by the Jones vector

�J1 =
1√

1 + |β|2
(

1
β

)
,

where β is a complex constant. You wish to char-
acterize this state of polarization as “RH ellip-
tical” or “LH elliptical”, depending on whether
(at z = 0) the electric field vector precesses
clockwise or counterclockwise around ẑ. What
property of β would you use to decide whether
this state is RH or LH elliptical?
(c.)
For the conditions of part (b.), decompose �J1

into a linear sum (with real coefficients) of a
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wave with linear polarization plus a wave with
RH circular polarization. Perform this same task
with “RH” replaced by “LH”. If you are success-
ful in both tasks, you might wonder whether
there really exists a unique association of RH
or LH behavior with �J1. Would this concern
invalidate your answer to (b.)?
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