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PROBLEM SET 7

35.
Liénard’s equation for the Poynting vector

�Sa =
1
µ0

�Ea × �Ba

arising from acceleration of a point particle of
charge q is

�Sa = (
q

4πε0
)2

ε0
c

{ R̂
R2

[ R̂ × [(R̂ − �β) × �̇
β]

(1 − R̂ · �β)3
]2}

ret
.

(a.)
Show that Liénard’s equation follows directly
from the electric and magnetic fields arising
from acceleration of a point particle, using the
acceleration fields

�Ea =
q

4πε0

1
c

{ 1
R

R̂ × [(R̂ − �β) × �̇
β]

(1 − R̂ · �β)3

}
ret

c �Ba =
{
R̂ × �Ea

}
ret

.

(b.)
Suppose that the particle is in uniform motion
around a circle of radius b in the plane z = 0
centered at the origin. The motion is ultrarela-
tivistic, i.e. (1 − β2)−1/2 � 1. To lowest order,
calculate the radiated power per unit area ob-
served at (0, 0, z), where z � b.
(c.)
Is ẑ a direction in which the power radiated per
unit solid angle is near the maximum for this
motion? Explain.

36.
As an intermediate step in the derivation of the
velocity and acceleration fields �Ev and �Ea, in
class we derived the expression

�E =
q

4πε0

{ 1

1 − R̂ · �β

[ R̂
R2

+
d

c dt

R̂ − �β

R(1 − R̂ · �β)

]}
ret

where the subscript “ret” means that the differ-
entiation should be done first, and afterward all

time-dependent quantities should be evaluated
at time tret = t − R/c.

Define �̇
β ≡ d�β/dt. Use two relations worked out

in class:
dR
c dt

= −R̂ · �β

dR̂
c dt

=
R̂ × (R̂ × �β)

R
.

With these tools, finish the derivation to obtain
�Ev (as given in an earlier problem) and �Ea (as
given in the previous problem).

37.
Griffiths Problem 3.40.

38.
The electrostatic potential created by a static
point charge can take a nontrivial form when the
coordinate system is chosen to have an origin
which, for some other reason, must be centered
at point that does not coincide with the charge’s
position.

This problem concerns the potential V (�r ) cre-
ated by a localized charge distribution ρ(�r ′).
With the observation point located outside the
charge distribution (r > r′max), use the standard
expansion in spherical harmonics

ε0V (r, θ, φ) =
∞∑

l=0

+l∑
m=−l

Ylm(θ, φ)
(2l + 1)rl+1

qlm ,

where the multipole moments qlm are defined in
the hint for the previous problem. In spheri-
cal polar coordinates, consider a point charge e
located at (r′, θ′, φ′) with respect to a certain ori-
gin. Determine the electrostatic potential that
it creates at an observation point (r, θ, φ), with
r > r′max.
(a.)
Write down the exact value of V(r, θ, φ, r′, θ′, φ′)
as an infinite sum over l and m.
(b.)
Explicitly evaluating the spherical harmonics as
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functions of θ and φ (or θ′ and φ′), write down
all the monopole, dipole, and quadrupole terms
(l = 0, 1, and 2).

39.
Arrange five finite point charges at five differ-
ent positions so that all l ≤ 4 moments of the
charge distribution vanish, except for the m = 0
hexadecapole moment

q40 ≡
∫

dτ ′ρ(�r ′)r′4Y ∗
40(θ

′, φ′) .

40.
Consider the dimensionless operator

�L ≡ 1
i �r ×∇

(apart from a missing factor of h̄, this is the
same as the angular momentum operator used
in quantum mechanics).
(a.)
In spherical polar coordinates, show that

i�L = φ̂
∂

∂θ
− θ̂

sin θ

∂

∂φ
.

(b.)
Express θ̂ and φ̂ in terms of x̂, ŷ, ẑ, θ, and φ.
(c.)
Show that

iLz =
∂

∂φ

L± ≡ Lx ± iLy = e±iφ
(± ∂

∂θ
+ i cot θ

∂

∂φ

)
.

[L± are raising and lowering operators, which,
within a factor, change Ylm into Yl,m±1 .]
(d.)
Show that

L2 = L2
z + 1

2{L+, L−} ,

where {a, b} is the anticommutator ab + ba.
(e.)
Finally, show that

−L2 = r2∇2
ang ,

where ∇2
ang is the part of ∇2 which involves

derivatives in θ and φ.

41.
This problem is omitted intentionally.

42.
Working in the far zone r′ � λ � r, con-
sider azimuthally symmetric (m = 0) electric
quadrupole (E20) radiation. At a particular an-
gular frequency ω, work with the complex fields
�̃B(�r) and �̃E(�r) defined by

�B(�r, t) ≡ Re
( �̃B(�r)e−iωt

)
�E(�r, t) ≡ Re

(�̃E(�r)e−iωt
)

.

For E-type radiation, the magnetic field �̃B (⊥ r̂)
is proportional to the vector spherical harmonic
�X:

�̃B ∝ �X20(θ, φ) ≡ �L Y20(θ, φ) ,

with i�L ≡ �r ×∇ . Use the fact that

�̃E ≈ c�̃B × r̂

in the far zone. Obtain a function f(θ, φ) such
that the radiated power P in the far zone is
proportional to it:

dP

dΩ
∝ f(θ, φ) .
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