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PROBLEM SET 5

21. (Effect of inefficient rocket engine)
All of the energy put out by the rocket engine de-
picted in scsr Fig. 9 consists of particles emitted
straight out the back. Consider the more realistic
case in which only a fraction ε of the energy out-
put consists of such particles; as seen in a Lorentz
frame comoving with the rocket, the balance of
the energy is emitted isotropically, for example as
thermal photons. Therefore ε is the engine’s effi-
ciency. Otherwise adopt the conditions of scsr
Fig. 9 and carry out a derivation analogous to
that found in scsr §14. Assuming that it starts
from rest, show that the final boost of the rocket
is reduced directly by this efficiency factor:

ηfinal = ε |�β1| ln m0

mfinal
.

22. (Wave aberration)
Please refer to scsr Fig. 10. Consider Lorentz
frames S and S ′, with spatial origins coincident
at t = t′ = 0. As usual, frame S ′ moves in
the x̂ = x̂′ direction with velocity β0c relative to
frame S. A wave is emitted by a source that is
at rest with respect to S ′. As seen by an ob-
server in the lab frame S, the wave travels with
phase velocity βphc at an angle θ with respect
to the x̂ direction (θ = 0 if directly approaching,
θ = π if directly receding). However, as seen by
an observer who is at rest with respect to the
frame S ′, show that the wave makes a different
angle θ′ with respect to the x̂′ direction, where

tan θ′ =
sin θ

γ0(cos θ − β0βph)
.

23. (Lorentz transformation of EM fields)
Consider Lorentz frames S and S ′, with frame
S ′ moving in the x̂ = x̂′ direction with veloc-
ity β0c relative to frame S. Using the Lorentz
transformation for the field strength tensor,

F ′µν = Λµ
ρΛ

ν
σF ρσ ,

and considering explicitly the values of the ele-
ments of Fµν , as given by scsr Eq. (62), show
that

E′
y = γ0(Ey − β0cBz) ,

as claimed by Griffiths’ Eq. (12.102).

24. (Relativistic electron-positron beams)
In a straight channel oriented along the ẑ axis
there are two opposing beams:

• a beam of positrons (charge +e) with velocity
+ẑβ0c.

• a beam of electrons (charge −e) with velocity
−ẑβ0c.

Each beam is confined to a small cylindrical vol-
ume of cross sectional area A centered on the
ẑ axis. Within that volume, there is a uni-
form number density = n positrons/m3 and n
electrons/m3.
(a.)
In terms of n, A, e, and β0, calculate the total
current I in the channel due to the sum of both
beams (note I �= 0).
(b.)
Use Ampère’s Law to calculate the (azimuthal)
magnetic field �B outside the channel a distance
s from the ẑ axis.

Consider now a Lorentz frame S ′ traveling in the
ẑ direction with velocity β0c relative to the lab
frame described above. (This β0 is the same β0

as above.)
(c.)
As seen in S ′, calculate the number density
n′

+ of positrons within the cylindrical volume.
(You may use elementary arguments involving
space contraction, or you may use the fact that
(cρ, �J) is a 4-vector, where ρ is the charge den-
sity (coul/m3) and �J is the current density
(amps/m2).)
(d.)
As seen in S ′, calculate the number density n′

−
of electrons within the cylindrical volume.
(e.)
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Calculate the (cylindrically radial) electric field
�E′ seen outside the channel in S ′. Do this both

• by using the results of (c.) and (d.) plus Gauss’s
law, and

• by using the results of (b.) plus the rules for
relativistic �E and �B field transformations.

25.
(a.)
Express µ0J

ν as the four-divergence of the field
strength tensor Fµν . Exploiting the antisym-
metry of Fµν under interchange of its indices,
prove without reference to the specific values of
the elements of F that

∂µJµ = 0

and thus that electric charge must be conserved.
(The basic structure of Maxwell’s equations
would have to be completely reformulated if
even the tiniest violation of electric charge con-
servation were to be observed anywhere in the
universe.)
(b.)
Define

εµνρσ ≡ gµαgνβgρκgσλεαβκλ ,

where ε is as defined after scsr Eq. (64). Prove
that

εµνρσ = −εµνρσ .

(c.)
Without making reference to the specific values
of the dual field strength tensor

Gµν ≡ 1
2εµνρσFρσ ,

using the antisymmetry of ε, prove that

∂µGµν = 0 .

(This is equivalent to the sourceless Maxwell
equations.)

26.
The field strength and dual field strength tensors
are

Fµν ≡ ∂µAν − ∂νAµ

Gµν ≡ 1
2εµνρσFρσ ,

where εµνρσ = 1 (−1) when µνρσ are even (odd)
permutations of 0123, and 0 otherwise. You
may use their explicit elements as given in scsr
Eqs. (62) and (65).
(a.)
By explicit evaluation, show that FµνFµν is pro-
portional to E2 − c2B2, and find the constant
of proportionality. (Because FµνFµν is obvi-
ously a Lorentz scalar, the Lorentz invariance of
E2 − c2B2 is therefore said to be manifest.)
(b.)
By explicit evaluation, show that FµνGµν is
proportional to �E · �B, and find the constant of
proportionality. (Likewise the Lorentz invari-
ance of �E · �B is manifest.)
(c.)
What two criteria must (uniform nonzero) �E and
�B satisfy in the lab frame so that, in a different
inertial frame, �B is allowed to vanish?

27.
Griffiths Problem 12.36.
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