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PROBLEM SET 4

15. (Taylor & Wheeler problem 51)
The clock paradox, version 3.
Can one go to a point 7000 light years away –
and return – without aging more than 40 years?
“Yes” is the conclusion reached by an engineer
on the staff of a large aviation firm in a recent
report. In his analysis the traveler experiences a
constant “1-g” acceleration (or deceleration, de-
pending on the stage reached in her journey).
Assuming this limitation, is the engineer right in
his conclusion? (For simplicity, limit attention
to the first phase of the motion, during which
the astronaut accelerates for 10 years – then
double the distance covered in that time to find
how far it is to the most remote point reached
in the course of the journey.)
(a.)
The acceleration is not g = 9.8 meters per sec-
ond per second relative to the laboratory frame.
If it were, how many times faster than light
would the spaceship be moving at the end of
ten years (1 year = 31.6 × 106 seconds)? If the
acceleration is not specified with respect to the
laboratory, then with respect to what is it spec-
ified? Discussion: Look at the bathroom scales
on which one is standing! The rocket jet is al-
ways turned up to the point where these scales
read one’s correct weight. Under these condi-
tions one is being accelerated at 9.8 meters per
second per second with respect to a spaceship
that (1) instantaneously happens to be riding
alongside with identical velocity, but (2) is not
being accelerated, and, therefore (3) provides
the (momentary) inertial frame of reference rel-
ative to which the acceleration is g.
(b.)
How much velocity does the spaceship have after
a given time? This is the moment to object to the
question and to rephrase it. Velocity βc is not
the simple quantity to analyze. The simple quan-
tity is the boost parameter η. This parameter is
simple because it is additive in this sense: Let the
boost parameter of the spaceship with respect to
the imaginary instantaneously comoving inertial
frame change from 0 to dη in an astronaut time

dτ . Then the boost parameter of the spaceship
with respect to the laboratory frame changes in
the same astronaut time from its initial value η
to the subsequent value η+dη. Now relate dη to
the acceleration g in the instantaneously comov-
ing inertial frame. In this frame g dτ = c dβ =
c d(tanh η) = c tanh (dη) ≈ c dη so that

c dη = g dτ

Each lapse of time dτ on the astronaut’s watch is
accompanied by an additional increase dη = g

cdτ
in the boost parameter of the spaceship. In
the laboratory frame the total boost parame-
ter of the spaceship is simply the sum of these
additional increases in the boost parameter. As-
sume that the spaceship starts from rest. Then
its boost parameter will increase linearly with
astronaut time according to the equation

cη = gτ

This expression gives the boost parameter η of
the spaceship in the laboratory frame at any
time τ in the astronaut’s frame.
(c.)
What laboratory distance x does the spaceship
cover in a given astronaut time τ? At any
instant the velocity of the spaceship in the lab-
oratory frame is related to its boost parameter
by the equation dx/dt = c tanh η so that the
distance dx covered in laboratory time dt is

dx = c tanh η dt

Remember that the time between ticks of the
astronaut’s watch dτ appear to have the larger
value dt in the laboratory frame (time dilation)
given by the expression

dt = cosh η dτ

Hence the laboratory distance dx covered in as-
tronaut time dτ is

dx = c tanh η cosh η dτ = c sinh η dτ
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Use the expression cη = gτ from part (b.) to
obtain

dx = c sinh
(gτ
c

)
dτ

Sum (integrate) all these small displacements dx
from zero astronaut time to a final astronaut
time to find

x =
c2

g

[
cosh

(gτ
c

)
− 1

]

This expression gives the laboratory distance x
covered by the spaceship at any time τ in the
astronaut’s frame.
(d.)
Plugging in the appropriate numerical values,
determine whether the engineer is correct in his
conclusion reported at the beginning of this ex-
ercise.

16. (Surface muons)
“Surface” muon beams are important tools for
investigating the properties of condensed mat-
ter samples as well as fundamental particles.
Protons from a cyclotron produce π+ mesons
(quark-antiquark pairs) that come to rest near
the surface of a solid target. The pion then de-
cays to an (anti)muon (µ+, a heavy electron-like
particle) and a muon neutrino (νµ) via

π+ → µ+ + νµ .

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays
at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed (and, as it turns out,
100% polarization as well). For the purposes of
this problem, consider a muon to have 3

4 of the
rest mass of a pion; neglect the neutrino mass.
(a.)
Show that the surface muons travel at a speed
which is a fraction β0 = 7

25 of the speed of light.
(b.)
If a muon’s mean proper lifetime is τ , what frac-
tion of the muons will decay during a flight path
of length L in the laboratory? Express your
answer in terms of β0.

17.
In the lab frame S, a particle with velocity βc
= 4

5c decays into two massless particles with the
same energy each.
(a.)
If the parent particle has mean (proper) lifetime
τ in its own rest frame S ′, calculate its mean
flight path L in the lab frame S.
(b.)
In the lab frame S, calculate the opening an-
gle ψ = cos−1 p̂1 · p̂2 between the two daughter
particles.

18.
Here’s an adult version of Griffiths’ Problem
12.35. In a pair annihilation experiment, a
positron (mass m) with total energy E = γmc2

hits an electron (same mass, but opposite charge)
at rest. (Griffiths has it the other way around,
but that’s unrealistic – it’s easy to make a
positron beam, but hard to make a positron
target.) The two particles annihilate, producing
two photons. (If only one photon were produced,
energy-momentum conservation would force it to
be a massive particle traveling at a velocity less
than c.) If one of the photons emerges at an-
gle θ relative to the incident positron direction,
show that its energy ε is given by

mc2

ε
= 1 −

√
γ − 1
γ + 1

cos θ .

(In particular, if the photon emerges perpendic-
ular to the beam, its energy is equal to mc2,
independent of the beam energy. Similar results
have been used to design clever experiments.)

19.
If you have studied Rutherford scattering (elas-
tic scattering of a nonrelativistic He nucleus from
an Au nucleus), you have seen the differential
cross section for this process written in the form

dσ

dΩ
∝ (zZe2)2

sin4 Θ
2

,

where ze (Ze) is the electric charge of the He
(Au) nucleus; Θ is the angle by which the He
nucleus is elastically scattered, measured in the
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CM frame; and dΩ is an element of solid an-
gle within which the He nucleus emerges in that
frame. [A century ago, Rutherford-scattering
data collected by graduate students who were
used as particle detectors demonstrated that
atoms contain charged point-like constituents
(nuclei).] Here we revisit Rutherford scattering
for relativistic particles.

Consider the 2+2 relativistic scattering process

p+ a→ q + b ,

where p, a, q, and b denote both the particles
and their 4-momenta. The Mandelstam vari-
ables, first written down by Berkeley emeritus
professor Stanley Mandelstam, are

s ≡ (p+ a) · (p+ a) ≡ CM energy2

t ≡ (q − p) · (q − p) ≡ 4 momentum transfer2

u ≡ (b− p) · (b− p) ≡ cross channel transfer2

In this problem we are concerned with the Man-
delstam variable t.

(a.)
Further assuming that the masses of particles p
and q are negligible, show that

−t = 4E
c

E′
c sin2 Θ

2 ,

where E (E′) is the energy of particle p (q), and
Θ is the angle between �p and �q.
(b.)
Why is d(−t) a Lorentz invariant? dσ is an area
transverse to the beam direction. Why is dσ
invariant to Lorentz transformations along that
direction? In a system of units where h̄ = c = 1,
all quantities have dimensions that can be ex-
pressed in units of Joules. In those units, what
are the dimensions of dσ?
(c.)
In part (b.) you showed that dσ/d(−t) is a
Lorentz invariant. If particle p (which becomes
particle q) and particle a (which becomes parti-
cle b) both are structureless, and if the scattering
is elastic (particles a and b both have the same
mass), the only relevant Lorentz-invariant vari-
able that is available to us is −t. On purely
dimensional grounds, show that

dσ

d(−t) ∝ 1
t2
.

[If p (a) has electric charge ze (Ze), and they
interact electromagnetically, the constant of pro-
portionality is 4πz2Z2α2, where the fine struc-
ture constant α is given as usual by 4πε0α =
e2/h̄c. This formula is correct to the extent that
Z or z × (α ≈ 1/137) can be neglected relative
to unity.]
(d.)
Under all of these conditions, using the results of
(a.) and (c.) and working in the center of mass,
show that the nonrelativistic elastic scattering
result

dσ

dΩ
∝ 1

sin4 Θ
2

does remain valid even when relativistic effects
are taken into account.

20. (Relations used in particle physics)
(a.) Lorentz-invariant phase space [lips]
By transforming dpx and E while keeping py and
pz fixed, show that

c dpx

E
dpydpz

is invariant to a boost along x. (Since one can
always define x to be the boost direction, and
d3p ≡ dpxdpydpz, a lips element

c d3p

E

is invariant to a boost in any direction and there-
fore is Lorentz invariant.)
(b.)
Suppose a particle has momentum �p and energy
E. Define the particle’s longitudinal rapidity y
to be the boost along x that would be needed to
make p′x = 0 in the new frame S ′. Show that

y = tanh−1 cpx

E
.

If your calculator doesn’t have an arc hyperbolic
tangent button, use the equivalent definitions

y = 1
2 ln

E/c+ px

E/c− px

y = ln
E/c+ px√

p2
y + p2

z +m2c2
.
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(c.)
Using the fact that the rapidity (boost) is the
additive parameter for the Lorentz transforma-
tion, and that y is defined to be a boost along x̂,
argue that an increment dy in longitudinal ra-
pidity must be the same in two Lorentz frames
that differ only by a relative boost along x̂. Use
this argument to conclude that

dy dpydpz

is invariant to boosts along x̂, as was the lips
element

c d3p

E

in part (a.). (In fact, these two expressions
are equal.) Invariance of the longitudinal rapid-
ity interval dy is a godsend for proton collider
users. Since the proton’s interacting constituents
(quarks or gluons) carry only a variable fraction
of the proton momentum, the center of mass
(cm) of the colliding constituents is boosted
along the beam direction by a variable amount
(typically of order unity). However, the differ-
ence in longitudinal rapidity between any pair
of emitted particles is unaffected by this unwel-
come cm boost.)
(d.)
Define the pseudorapidity ypseudo as the longi-
tudinal rapidity that a particle would have if it
were ultrarelativistic. Show that

ypseudo = tanh−1(cos θ) ,

where θ is the angle between the particle’s direc-
tion and the x axis. (This is another godsend:
if a particle is known to be ultrarelativistic, its
longitudinal rapidity can be approximated by its
pseudorapidity, which can be measured by know-
ing only the particle’s direction.) An equivalent
definition of pseudorapidity is

ypseudo = − ln
(
tan θ

2

)
.
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