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PROBLEM SET 1

-6.
(a.)
Taking ẑ to be its direction of propagation, a
plane monochromatic electromagnetic wave with
angular frequency ω is described by the electric
and magnetic fields

�E = Re
(
Ẽ exp

(
i(k̃z − ωt)

))
�H = Re

(
H̃ exp

(
i(k̃z − ωt)

))
,

where Ẽ and H̃ are complex constant vectors,
and k̃ is a constant scalar, complex if the medium
is conducting.

In an insulating medium with fixed uniform di-
electric constant ε and magnetic permeability µ,
k̃ is real. Show that Maxwell’s equations reduce
to

Ẽz = 0

H̃z = 0

kẑ × Ẽ = µωH̃

kẑ × H̃ = −εωẼ .

-5.
(a.)
Under the conditions of Problem -6, how many
different real constants must be supplied in order
to fully specify e.g. Ẽ? Once Ẽ is specified, how
many more additional real constants are needed
to specify H̃?
(b.)
Under these same conditions, show that the
time-averaged energy flux density of the electro-
magnetic wave is

〈�S 〉 = 1
2Re(Ẽ × H̃∗) .

Would this be true in a conducting medium?

-4.
Consider a plane EM wave in medium 1 that
is normally incident on a plane interface with

medium 2. In lecture we derived the amplitude
reflection coefficient

R̃ =
Z̃−1

1 − Z̃−1
2

Z̃−1
1 + Z̃−1

2

,

where, using the notation of Problem -6, the in-
verse characteristic impedance of the medium is

Z̃−1 ≡ H̃

Ẽ
,

and �E is assumed to lie along x̂ and �H along ŷ.
(a.)
In a conducting medium with fixed uniform mag-
netic permeability µ, show that Faraday’s law
still requires, as in Problem -6,

k̃Ẽ = µωH̃

⇒ Z̃−1 =
k̃

µω
.

(b.)
Using the full Maxwell equations and allowing
for nonzero constant conductivity σ (but neglect-
ing any volume free charge density), we showed
in lecture that

k̃

ω/v
≡ r + is , where

r =

√√
1 + γ2 + 1

2

s =

√√
1 + γ2 − 1

2

γ ≡ σ

εω

v ≡
√

1
εµ

.

Considering the special case in which medium
1 is an insulator and medium 2 is a conductor,
solve for the reflectivity R̃ and show that your
result is consistent with Griffiths Eq. 9.147(a).
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-3.
(a.)
Using the results of Problem -4, and considering
the limiting case of a poor conductor (γ � 1),
show that both �E and �H are attenuated by a
factor e for every distance

∆z =
2
σ

√
ε

µ

that is traversed by the plane wave.
(b.)
Consider again the problem of reflection at nor-
mal incidence. Suppose that both media have
the same ε/µ, but medium 1 is an insulator while
medium 2 has a small but nonzero conductivity.
In the poor-conductivity limit show that

R̃ = − iγ

4
.

-2.
Seawater has a resistivity of ≈ 0.2 ohm-meters,
and the dielectric constant of seawater is ε/ε0 ≈
80.
(a.)
Using reasonable approximations, estimate the
angular frequency ω at which the amplitude of
electromagnetic waves in seawater will diminish
by a factor e for every 10 meters traversed.
(b.)
A dial-up modem allows communication at a
maximum of 56 kilobits per second over tele-
phone lines working at audio frequencies (ω ≤≈
2π × 104 Hz). If electromagnetic waves ex-
changed between satellites and submarines must
penetrate ≈ 30 m of seawater without being at-
tenuated by more than a factor ≈ 400 in power,
estimate the maximum number of bits per sec-
ond that can be exchanged.

-1.
You shine a 1W flashlight on a crow, who absorbs
its beam. (Model the mechanical and thermal
properties of a crow as those of 100 g of water.)
(a.)
How long must the flashlight shine to heat the
crow by 1 degree Celsius?
(b.)

How long must the flashlight shine to acceler-
ate the crow from rest to a velocity of 1 mm/sec
(assuming no other forces are acting)?

0.
Griffiths Problem 9.18.
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