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HINTS FOR ASSIGNED EXERCISES

-6.
(a.)
Taking ẑ to be its direction of propagation, a
plane monochromatic electromagnetic wave with
angular frequency ω is described by the electric
and magnetic fields

�E = Re
(
Ẽ exp

(
i(k̃z − ωt)))

�H = Re
(
H̃ exp

(
i(k̃z − ωt))) ,

where Ẽ and H̃ are complex constant vectors,
and k̃ is a constant scalar, complex if the medium
is conducting.

In an insulating medium with fixed uniform di-
electric constant ε and magnetic permeability µ,
k̃ is real. Show that Maxwell’s equations reduce
to

Ẽz = 0

H̃z = 0

kẑ × Ẽ = µωH̃

kẑ × H̃ = −εωẼ .

Hint: Generically, to get one of these resulting
equations, plug the above expressions for �E, �H
into one of the six Maxwell equations. Choose
either a source-free Maxwell equation, such as
Faraday’s law, or a Maxwell equation for which
the source term is a free charge or current,
which vanishes in an insulator. Use the fact
that �D = ε �E and �B = µ �H with ε and µ strictly
constant. Note that Maxwell’s equations, like
any equations involving only physical quantities
like EM fields, must be real; as usual, choose
to set equal the imaginary parts as well as the
real parts of the complex equations of which
Maxwell’s equations are the real parts. Use the
fact that differentiating commutes with tak-
ing the real part of.

-5.
(a.)
Under the conditions of Problem -6, how many
different real constants must be supplied in order

to fully specify e.g. Ẽ? Once Ẽ is specified, how
many more additional real constants are needed
to specify H̃?
Hint: How many constants are required to spec-
ify a complex vector in two dimensions?

(b.)
Under these same conditions, show that the
time-averaged energy flux density of the electro-
magnetic wave is

〈�S 〉 = 1
2Re(Ẽ× H̃∗) .

Hint: Define Ẽ ≡ x̂Exe
iθx + ŷEye

iθy where

Ex, Ey are real (similarly for H̃). By brute

force, compute the time average 〈�S〉 ≡ 〈 �E × �H〉
over one period at a fixed position, for exam-
ple z = 0. By similar brute force, compute
1
2Re(Ẽ× H̃∗) and compare the result.

Would this be true in a conducting medium?
Hint: By definition, Ẽ, H̃ are independent of z.
Is 〈�S 〉?

-4.
Consider a plane EM wave in medium 1 that
is normally incident on a plane interface with
medium 2. In lecture we derived the amplitude
reflection coefficient

R̃ =
Z̃−1

1 − Z̃−1
2

Z̃−1
1 + Z̃−1

2

,

where, using the notation of Problem -6, the in-
verse characteristic impedance of the medium is

Z̃−1 ≡ H̃

Ẽ
,

and �E is assumed to lie along x̂ and �H along ŷ.
(a.)
In a conducting medium with fixed uniform mag-
netic permeability µ, show that Faraday’s law
still requires, as in Problem -6,

k̃Ẽ = µωH̃

⇒ Z̃−1 =
k̃

µω
.
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Hint: Repeat your derivation of the 3rd result-
ing equation of Problem -6, this time allowing k̃
to become complex.

(b.)
Using the full Maxwell equations and allowing
for nonzero constant conductivity σ (but neglect-
ing any volume free charge density), we showed
in lecture that

k̃

ω/v
≡ r + is , where

r =

√√
1 + γ2 + 1

2

s =

√√
1 + γ2 − 1

2

γ ≡ σ

εω

v ≡
√

1
εµ

.

Considering the special case in which medium
1 is an insulator and medium 2 is a conductor,
solve for the reflectivity R̃ and show that your
result is consistent with Griffiths Eq. 9.147(a).
Hint: In an insulator, k̃/(µω) = k/(µω) =
1/(µv), where v is the phase velocity.

-3.
(a.)
Using the results of Problem -4, and considering
the limiting case of a poor conductor (γ � 1),
show that both �E and �H are attenuated by a
factor e for every distance

∆z =
2
σ

√
ε

µ

that is traversed by the plane wave.
Hint: Retain the leading term in a Taylor series
expansion of

√
1 + γ2 − 1.

(b.)
Consider again the problem of reflection at nor-
mal incidence. Suppose that both media have
the same ε/µ, but medium 1 is an insulator while
medium 2 has a small but nonzero conductivity.
In the poor-conductivity limit show that

R̃ = − iγ
4
.

Hint: Retain the leading term in a Taylor se-
ries expansion of

√
1 + γ2 − 1. Use the fact that√

ε/µ = 1/(µv) in an insulator.

-2.
Seawater has a resistivity of ≈ 0.2 ohm-meters,
and the dielectric constant of seawater is ε/ε0 ≈
80.
(a.)
Using reasonable approximations, estimate the
angular frequency ω at which the amplitude of
electromagnetic waves in seawater will diminish
by a factor e for every 10 meters traversed.
Hint: To reach a skin depth as large as 10
m, should we be in the “good conductor” limit
γ � 1, i.e. ω � σ/ε, or the “poor conduc-
tor” limit γ � 1? It’s easiest initially to con-
sider the second option, given that the result of
Problem -3(a) is frequency-independent. Note
that

√
µ0/ε0, the characteristic impedance

of free space, is 377 ohms.

(b.)
A dial-up modem allows communication at a
maximum of 56 kilobits per second over tele-
phone lines working at audio frequencies (ω ≤≈
2π × 104 Hz). If electromagnetic waves ex-
changed between satellites and submarines must
penetrate ≈ 30 m of seawater without being at-
tenuated by more than a factor ≈ 400 in power,
estimate the maximum number of bits per sec-
ond that can be exchanged.
Hint: How should the maximum bit rate depend
on the working frequency?

-1.
You shine a 1W flashlight on a crow, who absorbs
its beam. (Model the mechanical and thermal
properties of a crow as those of 100 g of water.)
(a.)
How long must the flashlight shine to heat the
crow by 1 degree Celsius?
Hint: The specific heat of water is 1 calorie per
gram per ◦K, and 1 calorie = 4.186 joules.

(b.)
How long must the flashlight shine to accelerate
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the crow from rest to a velocity of 1 mm/sec (as-
suming no other forces are acting)?
Hint: The flashlight beam is composed of mass-
less photons. The standard equation of relativis-
tic kinematics is E2/c2 = p2 +m2c2, where E is
the energy and p is the momentum.

0.
Griffiths Problem 9.18.
(a) Hint: Use Eq. (9.120) of Griffiths. Char-
acteristically, the refractive index of glass is

n =
√

εµ
ε0µ0
≈

√
ε
ε0
≈ 1.5.

(b) Hint: In the good-conductor limit γ � 1,
the thickness of the conductive coating should
be several times its skin depth ∆z ≡ 1/Im(k̃).

(c) Hint: Use the formulæ of Problem -4(b). As
always, the wavelength is defined as 2π/Re(k̃)
even when significant attenuation occurs within
one wavelength.

1.
Consider a uniform static magnetic field

�B = ẑ B0 ,

where B0 is a constant.
(a.)
Show that �B can arise from the vector potential

�Aa = −B0y x̂ .

Hint:
In cartesian coordinates, take the curl of �Aa.
(b.)
Show that �B can arise from the vector potential

�Ab = 1
2B0s φ̂

(s and φ are cylindrical coordinates).
Hint:
In cylindrical coordinates, take the curl of �Ab.
Note that s is the perpendicular distance from
the point of interest to the z axis.
(c.)
By coordinate-system-independent vector anal-
ysis, show that �B can arise from the vector
potential

�A = 1
2
�B × �r

(remember that �B is constant).
Hint:
Use Identity #8 on Inside Cover (ic) #2 of

Griffiths (g). Does �B have any nonzero deriva-

tives? It’s easy to evaluate ∇ · �r and ( �B · ∇)�r in
cartesian coordinates. Do these (trivial) results
depend on the coordinate system chosen?
(d.)
Referring to g Eq. (10.7), find the gauge func-
tion λ that accomplishes the gauge transforma-
tion from �Aa to �Ab.
Hint:
If you set �Aa equal to g’s �A, and �Ab equal to his
�A′, g Eq. (10.7) becomes

�Ab − �Aa = ∇λ .

You’ll find it convenient to express both �Aa and
�Ab in the same coordinate system – probably
cartesian is easier. (Remember that φ̂ is not a
constant – it depends on where you are. See gic
#4.) Integrate

∫ �r

0

(∇λ) · d�	

and use the Gradient Theorem (gic #2) to
isolate λ(�r) − λ(0); to evaluate this difference,
similarly integrate the left-hand side (lhs) over
any path you like.

2.
Griffiths Problem 10.3.
Hint:
The fields come from g Eq. (10.2) and (10.3)
(spherical polar coordinates are convenient). As
usual, get the charge and current distribu-
tions from the sourceful Maxwell equations (g
Eq. (2.16) and (7.36)).

3.
Griffiths Problem 10.5.
Hint:
Use g Eq. (10.7) to do the transformation. The
result should be very familiar!

4.
In free space with ρ = 0 and �J = 0, show that
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all four Maxwell equations can be obtained cor-
rectly if the scalar potential V is assumed to
vanish, while the vector potential �A satisfies

0 = ∇ · �A

0 =
(∇2 − 1

c2
∂2

∂t2
)
�A .

Hint:
What do g Eqs. (10.2) and (10.3) tell you about

the sourceless Maxwell equations for any �A and
V ? So let’s consider the sourceful Maxwell equa-
tions. To show that ∇ · �E = 0 as required
by Gauss’s law, use Eq. (10.2) to express �E

in terms of �A; then use the first of the above
equations. To show that c2∇ × �B = ∂ �E/∂t as
required by Maxwell’s version of Ampère’s law,
use Eq. (10.3) to express �B in terms of �A, then
apply Identity #11 (gic #2). Use the first of the
above equations to eliminate one term and the
second plus Eq. (10.3) to reexpress what remains

in terms of �E.

5.
Griffiths Problem 10.7.
Hint:
We worked this problem in class – please consult
your notes. We assumed that

∇ · �A+ ε0µ0
∂V

∂t
= s(�r, t) ,

where s is any nonzero time-dependent scalar
field. What we wanted was

∇ · �A′ + ε0µ0
∂V ′

∂t
= 0

for a different (primed) set of potentials related
to the first set by g Eq. (10.7). Using Eq. (10.7)
to substitute primed potentials for the unprimed
potentials in the first equation above, and taking
advantage of a cancellation from the second
equation, we were left with a result of the form
g (10.14) with λ replacing V and s replacing
ρ/ε0. If we know how to solve (10.14) for V , do
we know how to solve the equation you got for λ?

6.
Consider the Levi-Civita density εijk ≡ 1 (ijk =

even permutation of 123); ≡ −1 (odd permuta-
tion of 123); ≡ 0 (otherwise). It is found, for
example, in the cross product

(�a×�b)i = εijkajbk .

Note that summation over the repeated indices
j and k is implied; their domain is 1 ≤ j, k ≤ 3.
(a.)
Show that

εijkεklm = δilδjm − δimδjl ,

where δ is the Kronecker delta function (whose
elements are those of the unit matrix).
Hint:
εijk and εklm vanish unless i 
= j 
= k and
k 
= l 
= m. Therefore only one value of k yields
a nonzero term, which occurs either if i = l and
j = m or if i = m and j = l. Suppose that
k takes on its one useful value, that i = l and
j = m, and that ijk is an even permutation
(even number of adjacent swaps) of 123. What
value does εijkεklm take under those circum-
stances? Work out the other three possibilities.
(b.)
The determinant of a 3× 3 matrix is given by

detA ∝ εijkAilAjmAknεlmn .

By considering the number of nonzero terms on
the rhs, and comparing it to the number of
terms you would have expected for a 3×3 deter-
minant, deduce the constant of proportionality.
Express it in terms of a factorial.
Hint:
Consider the special case Aij = δij , i.e. A is the
unit matrix. Then detA = εijkεijk. An individ-
ual term in this sum is equal to 1 if i 
= j 
= k
and 0 otherwise. How many different combina-
tions of i, j, and k are there in which i, j, and k
are all different?
(c.)
Guessing the explicit constant of proportional-
ity, write a similar equation for the determinant
of a 4× 4 matrix. How should εijkl be defined?
Hint:
How many different combinations of i, j, k, and l
are there in which i, j, k, and l are all different?
In defining εijkl, consider the fact that swapping

4



two adjacent indices of εijkl is like swapping two
adjacent rows of the matrix whose determinant
is calculated; swapping two adjacent indices of
εmnop is like swapping two adjacent columns of
that matrix.

7.
Griffiths Problem 12.55. Don’t get fooled by the
typo – he means “∂µ ≡ ∂/∂xµ”.
Hint:
Use the chain rule to express ∂/∂x′µ in terms of
∂xν/∂x

′
µ and ∂/∂xν . The problem then becomes

one of expressing ∂xν/∂x
′
µ in terms of Λµ

ν .

Consider the direct Lorentz transformation of
the covariant spacetime four-vector x:

x′ν = xµ

(
Λ−1

)µ

ν
.

Now, for any linear transformation

x′ν =
∂x′ν
∂xµ

xµ .

Therefore
∂x′ν
∂xµ

=
(
Λ−1

)µ

ν
.

Likewise, considering the inverse transforma-
tion of the covariant four-vector x, show that

∂xν

∂x′µ
= Λµ

ν .

8.
An object aµ is a (contravariant) four-vector
if it transforms (between frames as defined in
Short Course in Special Relativity (scsr) Fig. 2)
according to

a′µ = Λµ
νa

ν ,

where Λ is the (symmetric) 4× 4 Lorentz trans-
formation matrix. (Conventionally, the first
(superscript) index labels the row and the sec-
ond (subscript) index labels the column, but
this makes no difference for a symmetric ma-
trix.) Covariant four-vectors instead transform
according to

a′µ = aν(Λ−1)ν
µ

(otherwise the scalar product aµa
µ = a′µa

′µ

would not remain invariant for different Lorentz
frames). Consider now an (arbitrary) four-tensor
Hµν . In frame S, Hµν contracts with covariant
four-vector aν to yield contravariant four-vector
bµ, according to

bµ = Hµνaν .

In the frame S ′, requiring Hµν to satisfy the
transformation properties of a four-tensor, we
define H ′µν so that

b′µ = H ′µνa′ν .

Prove that

H ′µν = Λµ
ρΛ

ν
σH

ρσ .

This defines the Lorentz transformation prop-
erty of a four-tensor.
Hint:
Start from

bρ = Hρσaσ .

Substitute
bρ = (Λ−1)ρ

αb
′α

and
aσ = a′νΛν

σ .

Then multiply both sides of the resulting equa-
tion by Λµ

ρ and use the fact that

Λµ
ρ(Λ

−1)ρ
α = δµ

α ,

where δµ
α is an element of the unit matrix. Use

this fact to simplify the left-hand side. Then
compare your equation to

b′µ = H ′µνa′ν

and draw the desired conclusion.

9.
Consider the antisymmetric electromagnetic field
strength tensor

Fµν ≡ ∂µAν − ∂νAµ ,

where both ∂µ and Aµ are (contravariant) four-
vectors. Prove that Fµν is a four-tensor, i.e. it
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transforms according to the result of Problem 8.
Hint:
Start from

F ′µν = ∂′µA′ν − ∂′νA′µ .

Write
∂′µ = Λµ

ρ∂
ρ

A′ν = Λν
σA

σ

(similarly for ∂′ν and A′µ), plug in, and collect
terms.

10. (Light cone)
(a.)
Event A occurs at spacetime point (ct, x, y, z) =
(0, 1, 1, 1); event B occurs at (1, 0, 0, 0), both in
an inertial system S. Is there an inertial sys-
tem S ′ in which events A and B occur at the
same spatial coordinates? If so, find c|t′A − t′B |,
c times the magnitude of the time interval in S ′
between the two events.
Hint:
Denote by xA (xB) the spacetime coordinate of
event A (B); ∆x ≡ xB − xA. ∆x · ∆x is the
same in any Lorentz frame. Is ∆x timelike? If
so, how is ∆x′ ·∆x′ related to c|t′A − t′B |?
(b.)
Is there an inertial system S ′′ in which events A
and B occur simultaneously? If so, find |�r ′′

A−�r ′′
B |,

the distance in S ′′ between the two events.
Hint:
Is ∆x spacelike? If so, how is ∆x′′ ·∆x′′ related
to |�r ′′

A − �r ′′
B |?

(c.)
Can event A be the cause of event B, or vice
versa? Explain.
Hint:
Is ∆x timelike?
(d.)
Event D occurs at spacetime point (ct, x, y, z) =
(−1, 0, 0, 0); event E occurs at (2, 1, 1, 0), both in
an inertial system S. Is there an inertial system
S ′ in which events D and E occur simultane-
ously? If so, find |�r ′

E − �r ′
D|, the magnitude of

the distance in S ′ between the two events.
Hint:
Is ∆x spacelike? If so, how is ∆x′ ·∆x′ related
to |�r ′

E − �r ′
D|?

(e.)
Is there an inertial system S ′′ in which events D
and E occur at the same spatial coordinates? If
so, find c|t′′E − t′′D|, c times the magnitude of the
time interval in S ′′ between the two events.
Hint:
Is ∆x timelike? If so, how is ∆x′′ ·∆x′′ related
to c|t′′E − t′′D|?

11.
Using e.g. the method of Short Course in Special
Relativity [scsr] §7, obtain the 4 × 4 Lorentz
transformation matrix for the case in which
frame S ′ moves with respect to frame S with
speed β0c in an arbitrary direction (n1, n2, 0) in
the x-y plane, where �n is a unit vector.
Hint:
Consult scsr §7.

12.
(a.)
In scsr §8, clock time intervals measured in a
frame in which the clock is not at rest are shown
to be dilated by the factor γ0. This analysis
used the inverse Lorentz transformation. Rean-
alyze the same problem using the direct Lorentz
transformation. Is the answer the same?
Hint:
The temporal direct Lorentz transformation is

ct′2 = γ0ct2 − γ0β0x2

ct′1 = γ0ct1 − γ0β0x1 .

Subtracting,

γ0c∆t = c∆t′ + γ0β0∆x .

In order to eliminate ∆x, apply the spatial di-
rect Lorentz transformation and use the fact
that ∆x′ = 0.
(b.)
In scsr §9, the length of a rod measured in a
frame in which the rod is not at rest is shown to
be contracted by the factor 1/γ0. This analysis
used the direct Lorentz transformation. Reana-
lyze the same problem using the inverse Lorentz
transformation. Is the answer the same?
Hint:
The spatial inverse Lorentz transformation is

x2 = γ0x
′
2 + γ0β0ct

′
2

x1 = γ0x
′
1 + γ0β0ct

′
1 .
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Subtracting,

∆x = γ0∆x′ + γ0β0c∆t′ .

In order to eliminate ∆t′, apply the temporal
inverse Lorentz transformation and use the fact
that ∆t = 0.

13. (Addition of velocities)
In texts that do not emphasize the rapidity or
boost parameter η, the Einstein law for the ad-
dition of velocities is derived less elegantly as
follows (see scsr Fig. 7). Denote by x1 (x′1)
the x coordinate of the origin of S ′′ as observed
in the lab frame S (moving frame S ′). Write a
standard inverse Lorentz transformation

x0 = γx′0 + γβx′1

x1 = γx′1 + γβx′0 .

Then take the differential of it: dx0 = . . . ;
dx1 = . . . . Divide the bottom by the top
equation and identify

dx1

dx0
= β′′ = c−1 × speed of S ′′ in S

dx′1

dx′0
= β′ = c−1 × speed of S ′′ in S ′ .

Obtain the Einstein law for the addition of ve-
locities (scsr Eq. (24)):

β′′ =
β + β′

1 + ββ′ .

Hints are already embedded in the statement of
this problem.

14.
Consider the standard case in which two Lorentz
frames S and S ′ coincide at t = t′ = 0, with
frame S ′ moving at velocity βc x̂ with respect to
frame S. As seen in a third frame S ′′, also mov-
ing along x̂ with respect to S, two clocks fixed
to the origins of frames S and S ′, respectively,
appear to agree. With respect to frame S, con-
sidering that rapidity (“boost”) is the additive
parameter of the Lorentz transformation, show
that the speed β′′c of frame S ′′ is given by

β′′ = tanh
(

1
2 tanh−1 β

)
.

Hint:
If the clocks in S and S ′ agree, what does that
say about the |boost| of each frame relative to
frame S ′′? If frames S and S ′ are different, can
the signs of their boosts relative to frame S ′′ be
the same? Keeping in mind that rapidity (boost)
is the additive parameter of the Lorentz transfor-
mation, write a simple equation describing how
the boosts η′′ and η are related. Then convert
that equation to an equation in β′′ and β.

15. (Taylor & Wheeler problem 51)
The clock paradox, version 3.
Hints are already embedded in the statement of
this problem, which is lengthy and not repeated
here.

16. (Surface muons)
“Surface” muon beams are important tools for
investigating the properties of condensed mat-
ter samples as well as fundamental particles.
Protons from a cyclotron produce π+ mesons
(quark-antiquark pairs) that come to rest near
the surface of a solid target. The pion then de-
cays to an (anti)muon (µ+, a heavy electron-like
particle) and a muon neutrino (νµ) via

π+ → µ+ + νµ .

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays
at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed (and, as it turns out,
100% polarization as well). For the purposes of
this problem, consider a muon to have 3

4 of the
rest mass of a pion; neglect the neutrino mass.
(a.)
Show that the surface muons travel at a speed
which is a fraction β0 = 7

25 of the speed of light.
Hint:
Take π, µ, and ν to be the four-momenta of the
pion, muon, and neutrino, respectively. Express
energy-momentum conservation two ways:

π − µ = ν

π − ν = µ .
7



For each equation take the dot product of the
lhs and rhs with itself. Solve the first equa-
tion for Eµ and the second for Eν . Given that
the neutrino is massless, what can you say about
the relationship between Eν and c|�pν |? Given
that momentum is conserved, what can you say
about the relationship between �pν and �pµ? How
is βµ related to Eµ and c|�pµ|?
(b.)
If a muon’s mean proper lifetime is τ , what frac-
tion of the muons will decay during a flight path
of length L in the laboratory? Express your an-
swer in terms of β0.
Hint:
Apply time dilation to find the muon’s mean lab
lifetime, and use the muon’s lab velocity to con-
vert its mean lab lifetime to a mean lab path
length. For spontaneous decay, remember that
the survival probability depends exponentially
on the appropriate parameter (time or distance).

17.
In the lab frame S, a particle with velocity βc
= 4

5c decays into two massless particles with the
same energy each.
(a.)
If the parent particle has mean (proper) lifetime
τ in its own rest frame S ′, calculate its mean
flight path L in the lab frame S.
Hint:
Apply time dilation to find the parent particle’s
mean lab lifetime, and use the particle’s lab ve-
locity to convert its mean lab lifetime to a mean
lab flight path.
(b.)
In the lab frame S, calculate the opening angle
ψ = cos−1 p̂1 · p̂2 between the two daughter par-
ticles.
Hint:
Take P , p1, and p2 to be the four-momenta of the
parent and two daughters. Expressing energy-
momentum conservation as P = p1 + p2, take
the dot product of the lhs and rhs with itself.
Given that the daughter particles are massless,
how are c|�p1,2| related to E1,2? Given that en-
ergy is conserved, how are E1,2 related to the
parent energy E? Given the parent’s speed βc,
how is c|�P | related to E? Solve for cos−1 p̂1 · p̂2.

18.
Here’s an adult version of Griffiths’ Problem
12.35. In a pair annihilation experiment, a
positron (mass m) with total energy E = γmc2

hits an electron (same mass, but opposite charge)
at rest. (Griffiths has it the other way around,
but that’s unrealistic – it’s easy to make a
positron beam, but hard to make a positron
target.) The two particles annihilate, producing
two photons. (If only one photon were produced,
energy-momentum conservation would force it to
be a massive particle traveling at a velocity less
than c.) If one of the photons emerges at an-
gle θ relative to the incident positron direction,
show that its energy ε is given by

mc2

ε
= 1−

√
γ − 1
γ + 1

cos θ .

(In particular, if the photon emerges perpendic-
ular to the beam, its energy is equal to mc2,
independent of the beam energy. Similar results
have been used to design clever experiments.)
Hint:
Take a, b, d, and e to be the four-momenta in
this 2+2 reaction a+ b → d + e ; note that par-
ticles a and b have mass m, that particle b is
at rest, and that particle d emerges at angle θ
with respect to the direction of a. Because the
least is known about particle e, express energy-
momentum conservation as

a+ b− d = e

and take the dot product of the lhs and rhs
with itself. Your expression should involve Ea,
�pa, and �pd as well as m and ε (the energy of
d). Use the fact that particle d is massless to
express c|�pd| in terms of ε. You are given the
Lorentz factor γ of particle a. Eliminate Ea by
expressing it in terms of m and γ, and eliminate
|�pa| by expressing it in terms of m, γ, and β(γ).

19.
If you have studied Rutherford scattering (elas-
tic scattering of a nonrelativistic He nucleus from
an Au nucleus), you have seen the differential
cross section for this process written in the form

dσ

dΩ
∝ (zZe2)2

sin4 Θ
2

,
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where ze (Ze) is the electric charge of the He
(Au) nucleus; Θ is the angle by which the He
nucleus is elastically scattered, measured in the
CM frame; and dΩ is an element of solid an-
gle within which the He nucleus emerges in that
frame. [A century ago, Rutherford-scattering
data collected by graduate students who were
used as particle detectors demonstrated that
atoms contain charged point-like constituents
(nuclei).] Here we revisit Rutherford scattering
for relativistic particles.

Consider the 2+2 relativistic scattering process

p+ a→ q + b ,

where p, a, q, and b denote both the particles
and their 4-momenta. The Mandelstam vari-
ables, first written down by Berkeley emeritus
professor Stanley Mandelstam, are

s ≡ (p+ a) · (p+ a) ≡ CM energy2

t ≡ (q − p) · (q − p) ≡ 4 momentum transfer2

u ≡ (b− p) · (b− p) ≡ cross channel transfer2

In this problem we are concerned with the Man-
delstam variable t.

(a.)
Further assuming that the masses of particles p
and q are negligible, show that

−t = 4E
c

E′
c sin2 Θ

2 ,

where E (E′) is the energy of particle p (q), and
Θ is the angle between �p and �q.
Hint:
Take the dot product of (q − p) with itself; use
the fact that particles q and p are massless to
express c|�p| and c|�q| in terms of E and E′.
(b.)
Why is d(−t) a Lorentz invariant? dσ is an area
transverse to the beam direction. Why is dσ
invariant to Lorentz transformations along that
direction? In a system of units where h̄ = c = 1,
all quantities have dimensions that can be ex-
pressed in units of Joules. In those units, what
are the dimensions of dσ?
Hint:
The constant h̄c has dimensions of (energy) ×

(distance) [h̄c ≈ 197 × 10−9 eV m in SI]. How-
ever, in this problem’s system of units h̄c is equal
to unity, allowing you to multiply or divide by it
at will.
(c.)
In part (b.) you showed that dσ/d(−t) is a
Lorentz invariant. If particle p (which becomes
particle q) and particle a (which becomes parti-
cle b) both are structureless, and if the scattering
is elastic (particles a and b both have the same
mass), the only relevant Lorentz-invariant vari-
able that is available to us is −t. On purely
dimensional grounds, show that

dσ

d(−t) ∝
1
t2
.

[If p (a) has electric charge ze (Ze), and they
interact electromagnetically, the constant of pro-
portionality is 4πz2Z2α2, where the fine struc-
ture constant α is given as usual by 4πε0α =
e2/h̄c. This formula is correct to the extent that
Z or z × (α ≈ 1/137) can be neglected relative
to unity.]
(d.)
Under all of these conditions, using the results of
(a.) and (c.) and working in the center of mass,
show that the nonrelativistic elastic scattering
result

dσ

dΩ
∝ 1

sin4 Θ
2

does remain valid even when relativistic effects
are taken into account.
Hint:
In the cm, the elastic scattering process is speci-
fied completely by the single variable Θ. Express
−t and d(−t) in terms of Θ and dΘ. Then, inte-
grating over azimuth, express dΘ in terms of dΩ.

20. (Relations used in particle physics)
(a.) Lorentz-invariant phase space [lips]
By transforming dpx and E while keeping py and
pz fixed, show that

c dpx

E
dpydpz

is invariant to a boost along x. (Since one can
always define x to be the boost direction, and
d3p ≡ dpxdpydpz, a lips element

c d3p

E
9



is invariant to a boost in any direction and there-
fore is Lorentz invariant.)
Hint:
You are trying to show

c dp′xdp
′
ydp

′
z

E′ =
c dpxdpydpz

E
.

Use a direct Lorentz transformation along x to
express dp′x in terms of dpx and dE, and to ex-
press E′ in terms of E and px. Consider the fact
that the four-momentum2 is equal to m2c2:

E2

c2 − p2
x − p2

y − p2
z = m2c2 .

Holding py and pz constant, take the differen-
tial of each side to obtain a relation between dE
and dpx. Use this relation to eliminate dE from
your expression for dp′x; a welcome cancellation
should result.
(b.)
Suppose a particle has momentum �p and energy
E. Define the particle’s longitudinal rapidity y
to be the boost along x that would be needed to
make p′x = 0 in the new frame S ′. Show that

y = tanh−1 cpx

E
.

If your calculator doesn’t have an arc hyperbolic
tangent button, use the equivalent definitions

y = 1
2 ln

E/c+ px

E/c− px

y = ln
E/c+ px√

p2
y + p2

z +m2c2
.

Hint:
How is the particle’s |velocity| |�β|c related to |�p|
and E? How is the x component βxc of that
velocity related to px and E? What relative ve-
locity β0 of S ′ along the x direction would cause
β′

x and therefore p′x to vanish? How is β0 related
to the required boost?
(c.)
Using the fact that the rapidity (boost) is the
additive parameter for the Lorentz transforma-
tion, and that y is defined to be a boost along x̂,
argue that an increment dy in longitudinal ra-
pidity must be the same in two Lorentz frames

that differ only by a relative boost along x̂. Use
this argument to conclude that

dy dpydpz

is invariant to boosts along x̂, as was the lips
element

c d3p

E

in part (a.). (In fact, these two expressions
are equal.) Invariance of the longitudinal rapid-
ity interval dy is a godsend for proton collider
users. Since the proton’s interacting constituents
(quarks or gluons) carry only a variable fraction
of the proton momentum, the center of mass
(cm) of the colliding constituents is boosted
along the beam direction by a variable amount
(typically of order unity). However, the differ-
ence in longitudinal rapidity between any pair
of emitted particles is unaffected by this unwel-
come cm boost.)
(d.)
Define the pseudorapidity ypseudo as the longi-
tudinal rapidity that a particle would have if it
were ultrarelativistic. Show that

ypseudo = tanh−1(cos θ) ,

where θ is the angle between the particle’s direc-
tion and the x axis. (This is another godsend:
if a particle is known to be ultrarelativistic, its
longitudinal rapidity can be approximated by its
pseudorapidity, which can be measured by know-
ing only the particle’s direction.) An equivalent
definition of pseudorapidity is

ypseudo = − ln
(
tan θ

2

)
.

Hint:
If the particle is ultrarelativistic, what is the
relation between c|�p| and E?

21. (Effect of inefficient rocket engine)
All of the energy put out by the rocket engine de-
picted in scsr Fig. 9 consists of particles emitted
straight out the back. Consider the more realistic
case in which only a fraction ε of the energy out-
put consists of such particles; as seen in a Lorentz
frame comoving with the rocket, the balance of

10



the energy is emitted isotropically, for example as
thermal photons. Therefore ε is the engine’s effi-
ciency. Otherwise adopt the conditions of scsr
Fig. 9 and carry out a derivation analogous to
that found in scsr §14. Assuming that it starts
from rest, show that the final boost of the rocket
is reduced directly by this efficiency factor:

ηfinal = ε |�β1| ln m0

mfinal
.

Hint:
For a perfectly efficient engine, the first set of
equations in scsr §14 is

P0 = (mc,�0)

P ′ ≈ (
(m− dm)c+ 1

2mc|d�β|2,mc d�β
)

p1 =
(dE1

c
, �β1

dE1

c

)
.

When the engine becomes inefficient, a third
class of final-state elements is created: photons
that carry off energy but are emitted isotropi-
cally. Define another four-momentum

q1 =
(dF1

c
, �q1

)
to represent the sum of these photons. What
is the value of their net momentum �q1? How is
their total energy dF1 related to dE1?

22. (Wave aberration)
Please refer to scsr Fig. 10. Consider Lorentz
frames S and S ′, with spatial origins coincident
at t = t′ = 0. As usual, frame S ′ moves in
the x̂ = x̂′ direction with velocity β0c relative to
frame S. A wave is emitted by a source that is
at rest with respect to S ′. As seen by an ob-
server in the lab frame S, the wave travels with
phase velocity βphc at an angle θ with respect
to the x̂ direction (θ = 0 if directly approaching,
θ = π if directly receding). However, as seen by
an observer who is at rest with respect to the
frame S ′, show that the wave makes a different
angle θ′ with respect to the x̂′ direction, where

tan θ′ =
sin θ

γ0(cos θ − β0βph)
.

Hint:
Defining the y axis so that the wave travels in the
xy plane, write direct Lorentz transformations
for k′y and k′x.

23. (Lorentz transformation of EM fields)
Consider Lorentz frames S and S ′, with frame
S ′ moving in the x̂ = x̂′ direction with veloc-
ity β0c relative to frame S. Using the Lorentz
transformation for the field strength tensor,

F ′µν = Λµ
ρΛ

ν
σF

ρσ ,

and considering explicitly the values of the ele-
ments of Fµν , as given by scsr Eq. (62), show
that

E′
y = γ0(Ey − β0cBz) ,

as claimed by Griffiths’ Eq. (12.102).
Hint: Evaluate F ′02 using the elements of Λ
and F .

24. (Relativistic electron-positron beams)
In a straight channel oriented along the ẑ axis
there are two opposing beams:

• a beam of positrons (charge +e) with velocity
+ẑβ0c.

• a beam of electrons (charge −e) with velocity
−ẑβ0c.

Each beam is confined to a small cylindrical vol-
ume of cross sectional area A centered on the
ẑ axis. Within that volume, there is a uni-
form number density = n positrons/m3 and n
electrons/m3.
(a.)
In terms of n, A, e, and β0, calculate the total
current I in the channel due to the sum of both
beams (note I 
= 0).
Hint:
For a positron plasma of uniform velocity �v
and number density n, the current density
�J = +en�v , and the current I =

∫∫
�J · d�a .

(b.)
Use Ampère’s Law to calculate the (azimuthal)
magnetic field �B outside the channel a distance
s from the ẑ axis.

Consider now a Lorentz frame S ′ traveling in the
ẑ direction with velocity β0c relative to the lab

11



frame described above. (This β0 is the same β0

as above.)
(c.)
As seen in S ′, calculate the number density
n′

+ of positrons within the cylindrical volume.
(You may use elementary arguments involving
space contraction, or you may use the fact that
(cρ, �J) is a 4-vector, where ρ is the charge den-
sity (coul/m3) and �J is the current density
(amps/m2).)
Hint:
Considering only the positrons, write an inverse
Lorentz transformation for cρ+. For this partic-
ular relative velocity between S ′ and S, what is
�J ′
+ ? How is ρ

(′)
+ related to n

(′)
+ ?

(d.)
As seen in S ′, calculate the number density n′−
of electrons within the cylindrical volume.
Hint:
Considering only the electrons, write a direct
Lorentz transformation for cρ′−. Because S ′ is
not at rest with respect to the electrons, your
result will be slightly less elementary than your
result for n′

+.
(e.)
Calculate the (cylindrically radial) electric field
�E′ seen outside the channel in S ′. Do this both

• by using the results of (c.) and (d.) plus Gauss’s
law, and

• by using the results of (b.) plus the rules for rel-
ativistic �E and �B field transformations.
Hint:
Taking advantage of the trivial value of �E in
S, write a direct Lorentz transformation for �E′

⊥
(cf. scsr Eq. (42)). Use ε0µ0 = 1/c2 to check
that both answers agree.

25.
(a.)
Express µ0J

ν as the four-divergence of the field
strength tensor Fµν . Exploiting the antisym-
metry of Fµν under interchange of its indices,
prove without reference to the specific values of
the elements of F that

∂µJ
µ = 0

and thus that electric charge must be conserved.
(The basic structure of Maxwell’s equations

would have to be completely reformulated if
even the tiniest violation of electric charge con-
servation were to be observed anywhere in the
universe.)
Hint:
Consider the sum AµνB

µν , where A and B are
any two Lorentz four-tensors. Suppose that A
is even under the interchange of µ and ν, while
B is odd. Consider a particular set of values of
µ and ν, for example 0 and 2, yielding a term
A02B

02 in the sum. However, since B but not
A is odd under interchange of indices, this term
will be cancelled by another term A20B

20. In
this argument, if B is well-behaved under differ-
entiation, can ∂µ∂ν play the same role as Aµν?
(b.)
Define

εµνρσ ≡ gµαgνβgρκgσλε
αβκλ ,

where ε is as defined after scsr Eq. (64). Prove
that

εµνρσ = −εµνρσ .

Hint:
When an index µ is changed from a superscript
(contravariant) to a subscript (covariant), or vice
versa, a sign change is required if the index is
spacelike (1 ≤ µ ≤ 3) but not if it is timelike
(µ = 0). If εµνρσ is nonzero, how many of its in-
dices are spacelike?
(c.)
Without making reference to the specific values
of the dual field strength tensor

Gµν ≡ 1
2ε

µνρσFρσ ,

using the antisymmetry of ε, prove that

∂µG
µν = 0 .

(This is equivalent to the sourceless Maxwell
equations.)
Hint:
Substitute for Gµν its definition in terms of Fρσ,
and substitute for Fρσ its definition in terms of
∂ρ,σ and Aρ,σ. Recalling the argument made in
part (a.), what is the behavior of ε when µ and
ρ are interchanged?
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26.
The field strength and dual field strength tensors
are

Fµν ≡ ∂µAν − ∂νAµ

Gµν ≡ 1
2ε

µνρσFρσ ,

where εµνρσ = 1 (−1) when µνρσ are even (odd)
permutations of 0123, and 0 otherwise. You
may use their explicit elements as given in scsr
Eqs. (62) and (65).
(a.)
By explicit evaluation, show that FµνFµν is pro-
portional to E2 − c2B2, and find the constant
of proportionality. (Because FµνFµν is obvi-
ously a Lorentz scalar, the Lorentz invariance of
E2 − c2B2 is therefore said to be manifest.)
Hint:
Start with scsr Eq. (62) for the Fµν . Use scsr
Eqs. (58) (or the information in the top right
quarter of scsr page 17) to get the Fµν . Now,

FµνFµν = F 00F00 + F 01F01 + . . .+ F 33F33

(16 terms). Add up the terms.
(b.)
By explicit evaluation, show that FµνGµν is
proportional to �E · �B, and find the constant of
proportionality. (Likewise the Lorentz invari-
ance of �E · �B is manifest.)
Hint:
Start with scsr Eq. (65) for the Gµν .
(c.)
What two criteria must (uniform nonzero) �E

and �B satisfy in the lab frame so that, in a dif-
ferent inertial frame, �B is allowed to vanish?
Hint:
If �B is to vanish in one Lorentz frame, can �E · �B
(a Lorentz invariant) be nonzero in any Lorentz

frame? If | �E| is to exceed c| �B| in one Lorentz
frame, can E2 − c2B2 (a Lorentz invariant) be
negative or zero in any Lorentz frame?

27.
Griffiths Problem 12.36.
Hint:
Using the notation employed in class, and divid-
ing through by mc, Griffiths asks you to prove

d

dt
γ�β = γ

(�̇
β + γ2�β(�β · �̇β)

)
.

Writing γ in terms of β and routinely differen-

tiating the lhs, cancelling the term γ
�̇
β on both

sides, and ignoring the common factor γ3�β, this
reduces to proving

β
dβ

dt
= �β · d

�β

dt
.

To do this, consider d
dt (�β · �β).

28.
You are an indefagitable runner of rest mass m,
whose feet generate a constant force F0 in the x
direction (as observed in the laboratory). This
force causes your (relativistic) momentum to in-
crease linearly with laboratory time t.
(a.)
At t = 0, when you are at rest at the origin,
your feet begin to exert this force. Thereafter,
show that sinh η, where η is your rapidity, is
proportional to t, and find the constant of pro-
portionality.
Hint:
Along x̂, the time derivative of

p = γβmc = cosh η tanh ηmc

is equal to F0.
(b.)
At t = t1, a laser pulse is shot from the origin in
the x direction. How much of a head start t1 do
you require in order for the laser pulse never to
catch up with you?
Hint:
From part (a.) you know that sinh η = ωt, where
ω is the constant of proportionality that you ob-
tained there. Using cosh2 η − sinh2 η = 1, you
also know the time dependence of cosh η. Tak-
ing the ratio, you know the time dependence of
β = tanh η. Integrate cβ(t) (a perfect differen-
tial) to obtain the runner’s equation of motion

ω
c x(t) =

√
1 + ω2t2 − 1 .

Compare this to the laser pulse’s equation of
motion

ω
c xp(t) = ω(t− t1) .
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For what value of t1 will x stay larger than xp

(infinitesimally so when ωt is � 1 but finite)?

29.
At t = 0, a particle of rest mass m and charge
e is at rest at the origin. It accelerates under
the influence of a uniform static electric field
�E = ẑE0.
(a.)
For t > 0, show that the relativistic solution for
z(t) is given by

z(t) =
∫ t

0

cβz(t) dt

βz(t) = tanh η(t)

η(t) = sinh−1 eE0

mc
t .

Hint:
Use the hint for part (a.) of the previous prob-
lem.
(b.)
Suppose instead that, at t = 0, the particle has
an initial momentum �p(0) = x̂p⊥. Show that the
solution for z(t) is the same as in (a.), except
that m is replaced by meff , where

meff =
√
m2 + p2

⊥/c2 .

This says that, under the influence of a uniform
electrostatic field, the longitudinal motion of a
particle with nonzero transverse momentum is
the same as that of a heavier particle with zero
transverse momentum.
Hint:
Why is p⊥ constant? When p⊥ = 0 , the equa-
tion of motion along ẑ is determined by

d

dt
γβmc = eE0 ,

where

γ ≡ 1√
1− β2

=
E

mc2

and E is the particle’s total energy. When
�p⊥ 
= 0 , if you can show that

d

dt
γeffβzmeffc = eE0 , (A)

where

γeff ≡ E

meffc2
=

1√
1− β2

z

, (B)

the assertion to be proved will be justified.
To prove Eq. (A), consider the force equation
dpz/dt = eE0 and use the fact that γm =
γeffmeff . To prove Eq. (B), write βz = cpz/E .
(c.)
Under the conditions of part (b.), for t > 0 does
x(t) increase linearly with t? Explain.
Hint:
You have argued that p⊥ = γβxmc is constant.
So βx is constant if γ is constant.

30.
At t = 0, a particle of rest mass m and charge e is
at the origin, with initial momentum �p(0) = x̂p⊥.
It accelerates under the influence of a uniform
static magnetic field �B = ẑB0.
(a.)
For t > 0, show that the relativistic solution for
x(t) and y(t) is given by

x(t) =
∫ t

0

cβx(t) dt

y(t) =
∫ t

0

cβy(t) dt

γamcβx(t) = p⊥ cosωct

γamcβy(t) = p⊥ sinωct

ωc = − eB0

γam

γam =
√
m2 + p2

⊥/c2 .

Hint:
First, by considering the power �F · c�β and the
nature of the Lorentz force in a pure magnetic
field, show that |�p⊥| and therefore γa is con-
stant. Show that the Lorentz force equation can
be written

d�β

dt
= (ẑωc)× �β .

This is an equation for (ccw) precession of �β
about ẑ with angular frequency ωc. (Consid-
ering the negative sign of ωc, the precession is
actually cw).
(b.)
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Suppose instead that, at t = 0, the particle has
an initial momentum �p(0) = x̂p⊥ + ẑp‖. Show
that the solution for x(t) and y(t) is the same as
in (a.), except that γa is replaced by γ, where

γm =
√
m2 + p2

⊥/c2 + p2
‖/c

2 .

Hint:
Show that the solution is the same as in part
(a), except that

ωc = −eB0

γm
.

(c.)
Show that the result of (b.) alternatively can be
expressed as the result of (a.) with m replaced
by

meff =
√
m2 + p2

‖/c
2 .

This says that, under the influence of a uniform
magnetostatic field, the transverse motion of a
particle with nonzero longitudinal momentum is
the same as that of a heavier particle with zero
longitudinal momentum.
Hint:
Show that

γm =
√
m2

eff + p2
⊥/c2 .

(d.)
Under the conditions of part (b.), for t > 0 does
z(t) increase linearly with t? Explain.
Hint:
Use the fact that p‖ = γβzmc. Are p‖ and γ
both constant?

31.
At t = 0 at the origin of a spherical polar coordi-
nate system in the lab, a point particle of charge
q has velocity βc directed along the ẑ (north po-
lar) axis. It has been moving with that constant
velocity for a long time.
(a.)
Starting with the Coulomb field in the particle’s
rest frame, and using the rules for relativis-
tic transformation of EM fields, show that the
electric field observed in the lab at t = 0 and
�r = (r, θ, φ) is

4πε0 �E = r̂
q

r2
γ

(γ2 cos2 θ + sin2 θ)3/2
,

where as usual γ = 1/
√

1− β2.
Hint:
Work in Cartesian coordinates. Put the observer
in frame S at (x, 0, z), with ẑ the direction of
the charge’s motion. Put the charge at the ori-
gin (x′, y′, z′) = (0, 0, 0) of frame S ′. Write E′

x

and E′
z in terms of x′, y′, and z′. Then trans-

form E′
x, E′

z, and z′ to frame S. Finally, convert
to spherical polar coordinates in the lab frame.
(b.)
Show that this result is equivalent to Griffiths
Eq. (10.68).
Hint:
In Griffiths’ notation, R is the same as our
�r . Remove a factor γ3 from the denomina-
tor of the answer to part (a.), and substitute
cos2 θ = 1− sin2 θ.

32.
Griffiths Problem 10.9(b).
Hint:
Substitute I(tret) = q0δ(tret) = q0δ(t − R/c) in
Griffiths’ first equation of his solution to Exam-
ple 10.2. Since the integrand is even, integrate
from 0 to ∞ rather than from −∞ to ∞. Using
z =

√
R2 − s2, where s is the cylindrical radial

coordinate, convert the integral over dz to an
integral over dR. Convert the delta function
δ(t− R/c) to δ(R− ct) using the rule δ(f(x)) =
δ(x)/|df/dx| (true if f = 0 when x = 0). The
delta function trivializes the integration. Differ-
entiate your answer for �A to get �E and �B.

33.
The general expression for the electromagnetic
fields arising from a point particle of charge q

moving with velocity �βc and acceleration �̇βc is

�E = �Ev + �Ea with

�Ev =
q

4πε0

{ 1
R2

(R̂− �β)(1− β2)

(1− R̂ · �β)3

}
ret

c �B =
{
R̂× �E

}
ret

,

where �Ev is the velocity field, and the accelera-
tion field �Ea is given in a later problem. Here �r is
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a vector from the origin to the observer, �w(t) is a
vector from the origin to the particle, �R ≡ �r− �w,
and the subscript “ret” means that quantities
are to be evaluated at time tret = t− R/c.

Assume that �β lies in the z direction and is a
constant, so that the acceleration field vanishes.
As usual θ = cos−1 ẑ · r̂. Choose the origin of
coordinates to be the position of the particle at
t = 0. At that time, show that...
(a.)

−ctret = γ
(
γβz +

√
(γβz)2 + r2

)
;

Hint:
At t = 0,

ctret = −R = |�r − ẑβctret| .

Solve this quadratic equation for ctret and choose
the solution that yields −ctret = r when β = 0.
(b.)

R(1− R̂ · �β) = r

√
1− β2 sin2 θ ;

Hint:
Write the lhs as R− �R · �β . At t = 0, R = −ctret
(which is positive). Combining terms, you should
obtain

R(1− R̂ · �β) = −ctret(1− β2)− βz .

Substituting the result of part (a.) for ctret re-
sults in a lovely cancellation.
(c.)

�r = R(R̂− �β) .

Hint:
Write the rhs as �R− R�β . You have already en-
countered all the ingredients you need: at t = 0,
�R = �r − �βctret and ctret = −R .

34.
Under the conditions of the previous problem,
and using the tools developed there, show that
�Ev is equivalent to Griffiths Eq. (10.68).
Hint:
Tools (b.) and (c.) from the previous problem
are sufficient.

35.
Liénard’s equation for the Poynting vector

�Sa =
1
µ0

�Ea × �Ba

arising from acceleration of a point particle of
charge q is

�Sa = (
q

4πε0
)2
ε0
c

{ R̂
R2

[ R̂× [(R̂− �β)× �̇β]

(1− R̂ · �β)3
]2}

ret
.

(a.)
Show that Liénard’s equation follows directly
from the electric and magnetic fields arising
from acceleration of a point particle, using the
acceleration fields

�Ea =
q

4πε0
1
c

{ 1
R

R̂× [(R̂− �β)× �̇β]

(1− R̂ · �β)3

}
ret

c �Ba =
{
R̂× �Ea

}
ret

.

Hint:
After applying the bac− cab rule, only one term
survives.
(b.)
Suppose that the particle is in uniform motion
around a circle of radius b in the plane z = 0
centered at the origin. The motion is ultrarela-
tivistic, i.e. (1 − β2)−1/2 � 1. To lowest order,
calculate the radiated power per unit area ob-
served at (0, 0, z), where z � b.
Hint:
To an excellent approximation, R̂ is perpendic-

ular to both �β and
�̇
β. This makes �Sa trivial to

evaluate.
(c.)
Is ẑ a direction in which the power radiated per
unit solid angle is near the maximum for this
motion? Explain.
Hint:
Does the “train factor” (1− R̂ · �β)−6 provide any
enhancement at this observation point?

36.
As an intermediate step in the derivation of the
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velocity and acceleration fields �Ev and �Ea, in
class we derived the expression

�E =
q

4πε0

{ 1

1− R̂ · �β
[ R̂
R2

+
d

c dt

R̂− �β

R(1− R̂ · �β)

]}
ret

where the subscript “ret” means that the differ-
entiation should be done first, and afterward all
time-dependent quantities should be evaluated
at time tret = t− R/c.

Define �̇β ≡ d�β/dt. Use two relations worked out
in class:

dR
c dt

= −R̂ · �β
dR̂
c dt

=
R̂× (R̂× �β)

R
.

With these tools, finish the derivation to obtain
�Ev (as given in an earlier problem) and �Ea (as
given in the previous problem).
Hint:
For the terms involving

�̇
β , apply the bac − cab

rule in reverse. For the terms not involving
�̇
β ,

apply the bac− cab rule directly to R̂× (R̂× �β) .

37.
Griffiths Problem 3.40.
Hint:
Start with the definition

qlm ≡
∫
dτ ′ρ(�r ′)r′l Y ∗

lm(θ′, φ′)

of the multipole moments. A line charge is
azimuthally symmetric, causing the m 
= 0 mo-
ments to vanish since∫

dφ eimφ = 0 .

For a line charge along the z axis,
∫
ρ dτ ′ reduces

to
∫
λ dz .

38.
The electrostatic potential created by a static
point charge can take a nontrivial form when the
coordinate system is chosen to have an origin
which, for some other reason, must be centered
at point that does not coincide with the charge’s
position.

This problem concerns the potential V (�r ) cre-
ated by a localized charge distribution ρ(�r ′).
With the observation point located outside the
charge distribution (r > r′max), use the standard
expansion in spherical harmonics

ε0V (r, θ, φ) =
∞∑

l=0

+l∑
m=−l

Ylm(θ, φ)
(2l + 1)rl+1

qlm ,

where the multipole moments qlm are defined in
the hint for the previous problem. In spheri-
cal polar coordinates, consider a point charge e
located at (r′, θ′, φ′) with respect to a certain ori-
gin. Determine the electrostatic potential that
it creates at an observation point (r, θ, φ), with
r > r′max.
(a.)
Write down the exact value of V(r, θ, φ, r′, θ′, φ′)
as an infinite sum over l and m.
Hint:
The charge distribution for a point charge is a
delta function that trivializes the qlm integral.
Compare your result to the expression in your
lecture notes for the expansion in spherical har-
monics of 1/|�r − �r ′|.
(b.)
Explicitly evaluating the spherical harmonics as
functions of θ and φ (or θ′ and φ′), write down
all the monopole, dipole, and quadrupole terms
(l = 0, 1, and 2).
Hint:
Explicit spherical harmonics are found in Jack-
son (p. 109) or in the Particle Physics Booklet
(p. 299 in the 2006 edition). Note that

Yl −m = (−1)mY ∗
lm .

39.
Arrange five finite point charges at five differ-
ent positions so that all l ≤ 4 moments of the
charge distribution vanish, except for the m = 0
hexadecapole moment

q40 ≡
∫
dτ ′ρ(�r ′)r′4Y ∗

40(θ
′, φ′) .

Hint:
As noted in an earlier hint, the m 
= 0 moments
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vanish if the charge distribution is cylindrically
symmetric about the z axis; for point charges
this can be accomplished only by placing the
charges on the axis. The m = 0, l = odd mo-
ments vanish if the charge distribution is even
in z. Place four charges away from the origin to
cancel the m = 0 quadrupole (l = 2) moment;
place a fifth charge at the origin to cancel the
monopole (l = 0) moment.

40.
Consider the dimensionless operator

�L ≡ 1
i�r ×∇

(apart from a missing factor of h̄, this is the
same as the angular momentum operator used
in quantum mechanics).
(a.)
In spherical polar coordinates, show that

i�L = φ̂
∂

∂θ
− θ̂

sin θ
∂

∂φ
.

Hint:
Consult Griffiths’ inside cover (gic) #1.
(b.)
Express θ̂ and φ̂ in terms of x̂, ŷ, ẑ, θ, and φ.
Hint:
Consult gic #4.
(c.)
Show that

iLz =
∂

∂φ

L± ≡ Lx ± iLy = e±iφ
(± ∂

∂θ
+ i cot θ

∂

∂φ

)
.

[L± are raising and lowering operators, which,
within a factor, change Ylm into Yl,m±1 .]
Hint:
Plug the result of (b.) into the result of (a.). To
identify Lx, Ly, and Lz, collect the terms multi-
plying x̂, ŷ, and ẑ.
(d.)
Show that

L2 = L2
z + 1

2{L+, L−} ,
where {a, b} is the anticommutator ab+ ba.
Hint:

Write down L+L− and L−L+ in terms of Lx

and Ly (remember to preserve the order of the
operators).
(e.)
Finally, show that

−L2 = r2∇2
ang ,

where ∇2
ang is the part of ∇2 which involves

derivatives in θ and φ.
Hint:
Plug the results of (c.) into the result of (d.).
Consult gic #1.

41.
This problem is omitted intentionally.

42.
Working in the far zone r′ � λ � r, con-
sider azimuthally symmetric (m = 0) electric
quadrupole (E20) radiation. At a particular an-
gular frequency ω, work with the complex fields
�̃B(�r) and �̃E(�r) defined by

�B(�r, t) ≡ Re
( �̃B(�r)e−iωt

)
�E(�r, t) ≡ Re

(�̃E(�r)e−iωt
)
.

For E-type radiation, the magnetic field �̃B (⊥ r̂)
is proportional to the vector spherical harmonic
�X:

�̃B ∝ �X20(θ, φ) ≡ �LY20(θ, φ) ,

with i�L ≡ �r ×∇ . Use the fact that

�̃E ≈ c�̃B × r̂

in the far zone. Obtain a function f(θ, φ) such
that the radiated power P in the far zone is
proportional to it:

dP

dΩ
∝ f(θ, φ) .

Hint:
Since Yl0 is independent of φ, the only part of
�r×∇ that is relevant to this problem is φ̂ ∂

∂θ (see
problem 40). This makes it easy to compute the
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angular dependence of �̃B. The time-averaged
Poynting vector is

〈�S〉 =
1

2µ0
Re(�̃E × �̃B

∗
)

(see Griffiths Problem 11.15). Combine this with
the equation

�̃E ≈ c�̃B × r̂
and apply the bac − cab rule. This should con-

vince you that P ∝ | �̃B|2.

43.
This problem is omitted intentionally.

44.
Griffiths Problem 11.15.
Hint:
The algebra for this problem can be simplified
somewhat by defining u ≡ cos θ and maximizing
Griffiths’ Eq. (11.74) with respect to u. Solve
the resulting quadratic equation for u. In the ul-
trarelativistic limit it will also be convenient to
define ε ≡ 1 − β. In that limit ε � 1 and, near
where the maximum radiation is emitted, θ � 1.
To obtain Griffiths’ approximate result you will
need the Taylor expansions

cos θ ≈ 1− θ2

2

(1 + ε)n ≈ 1 + nε .

45.
Start from the expression derived in class for the
energy radiated by an accelerating point charge
per steradian per unit of retarded time t′:

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c

∣∣R̂× [
(R̂− �β)× �̇β]∣∣2

(1− R̂ · �β)5
.

Consider synchrotron radiation by a particle of
charge q moving in a circular orbit of radius b in
a coordinate system where

β̂ = ẑ

ˆ̇
β = x̂ ,

i.e. x̂ points toward the center of the circle and
ẑ points along its circumference in the particle’s
direction of motion. Define

R̂ ≡ (nx, ny, nz) ,

where n̂ is a unit vector extending from the par-
ticle in an arbitrary direction towards which an
element of radiation is emitted.
(a.)
Show that

R̂× [
(R̂− �β)× ˆ̇

β
]

= n̂nx − x̂− βn̂× ŷ .

Hint:
Apply the bac− cab rule.
(b.)
Using this result, show that

∣∣R̂×[
(R̂−�β)× ˆ̇

β
]∣∣2 = 1−2βnz +β2n2

z−(1−β2)n2
x

(c.)
Consider a set of spherical polar coordinates cen-
tered at the particle (not at the center of the
beam circle). Taking θ to be the polar angle of
n̂ relative to ẑ, and φ to be its azimuth about ẑ,
express nx and nz in terms of θ and φ.
Hint:
Consult gic #4.
(d.)
Using the results of (b.) and (c.), show that

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c
×

× β̇2

(1− β cos θ)3
(
1− sin2 θ cos2 φ

γ2(1− β cos θ)2
)
.

46.
Consider the final result of the previous prob-
lem.
(a.)
Perform the integration over dΩ = d(cos θ) dφ to
show that

4πε0
dW

dt′
=

2
3c3

(qβ̇c)2γ4 .

[Note that (qβ̇c)2 is equivalent to p̈2, where p is
the electric dipole moment of the point charge
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relative to the origin. Therefore this result is the
same as the (nonrelativistic) Larmor formula,
except for the additional factor γ4.]
Hint:
Define u ≡ 1− β cos θ and express the integrand
as a function of u rather than θ. It becomes
a polynomial in u that may trivially be inte-
grated.
(b.)
In terms of the |momentum| P of the point
charge and its rest mass m, show that

4πε0
dW

dt′
=

2q2

3c3
P 4

m4b2
,

and thus that the power lost to synchrotron ra-
diation depends on the fourth power of P , the
inverse fourth power of m (making it usually
negligible for all but electrons), and the inverse
square of b.
Hint:
For motion around a circle of radius b, the cen-
tripetal acceleration β̇c is equal to (βc)2/b. Use
P = γβmc .
(c.)
Suppose that you use an electron synchrotron
that taxpayers can afford. It circulates highly
relativistic electrons with β ≈ 1. You want to
build a new synchrotron with the same beam
current, the same power lost to synchrotron ra-
diation, but twice the beam momentum. Show
that the radius b of the new synchrotron must
increase by a factor of 16.
Hint:
Keep in mind that if the beam current stays the
same while the synchrotron radius increases by a
factor λ, the total number of radiating electrons
increases by λ as well.

47.
A free-electron laser consists of a beam of elec-
trons (with constant velocity βc) passing through
a structure known as an undulator. (Stronger
versions of these structures called wigglers are
used also in sections of a circular electron syn-
chrotron such as the ALS.) Take the beam di-
rection to be ẑ. Consider an alternating set of
magnets (for compactness, these are often per-
manent magnets, made of samarium cobalt as
developed at LBL by the late Klaus Halbach).

With a full period ∆z, they produce a strong
magnetic field that points alternately in the +x̂
and −x̂ directions. For this undulator we (un-
realistically) assume that this magnetic field is
weak enough so that, as seen in a frame moving
with velocity βcẑ, the electrons’ velocity relative
to that frame is � c.
(a.)
In the rest frame S ′ of the electron, with what
fundamental angular frequency ω′ does the mag-
netic field from the undulator appear to oscil-
late?
Hint:
Apply a Lorentz contraction to get the apparent
spacing of the magnets as seen by the electron.
Divide it by the relative velocity (between the
electron and the magnets) to obtain the time
period of the magnetic field as seen by the elec-
tron.
(b.)
In S ′, the oscillating electron produces elec-
tromagnetic radiation with angular frequency
ω′. Applying the relativistic Doppler shift to
(“forward”) radiation emitted along the beam
direction, what angular frequency ω does that
radiation have in the laboratory frame?
Hint:
As an alternative to the relativistic Doppler
formula, you may simply perform an inverse
Lorentz transformation on the 0th component of
the wave four-vector (ω/c,�k). You are describing

a massless photon, so |�k| = ω/c in either frame.
(c.)
Express λ, the wavelength of the forward radia-
tion, as a multiple of ∆z.
(d.)
At LBL’s ALS, using an alternating set of mag-
nets with ∆z = 10 cm, an experimenter wishes
to study the effect upon condensed-matter sam-
ples of a soft X-ray beam of wavelength 5 nm.
Use this information to estimate the ALS beam
energy (in GeV).

48.
This problem is omitted intentionally.

49.
(a.)
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This part is omitted intentionally.
(b.)
This part is omitted intentionally.
(c.)
In a more microscopic and detailed treatment of
plane EM waves propagating along ẑ in materi-
als that potentially are conducting, one assumes
that N valence electrons per m3 having charge
−e and mass m move in a potential well with
effective spring constant mω2

0 and damping co-
efficient Γm. One defines the complex dielectric
constant ε̃ via

ε̃

ε0
− 1 ≡ P̃

ε0Ẽ
,

where P̃ is the complex polarization, defined by

�P (z, t) = Re
(
�̃P exp

(
i(k̃z − ωt))) ,

in analogy to complex �̃E and �̃B. For not-too-
dense media in which the electric field felt by the
electron is approximately the same as the aver-
age field, it is straightforward to solve the force
equation for these oscillating electrons and de-
termine the complex polarization P̃ they create.
One obtains

ε̃

ε0
− 1 =

ω2
p

ω2
0 − ω2 − iΓω ,

where the plasma frequency2 is

ω2
p ≡

Ne2

mε0
.

The complex dielectric constant ε̃ includes the
effects of all electrons (free and bound). It is re-
lated to the ordinary dielectric constant ε (which
includes the effects only of bound electrons) by

ε̃ = ε(1 + iγ) =
k̃2

µω2
,

where as usual γ = σ
εω . Represent a good con-

ductor by ω0 = 0 (unbound) and Γ � ω (over-
damped). Using these results, show that the
conductivity σ is approximately

σ ≈ ε0ω
2
p

Γ
,

i.e. measuring the low-frequency conductivity is
a simple way to determine the damping coeffi-
cient.
Hint:
Consider the imaginary part of ε̃/ε0.
(d.)
Represent the ionosphere by ω0 = 0 (unbound),
and Γ � ω (underdamped). Specialize to AM
radio waves, for which ω < ωp. Show that the
amplitude reflection coefficient |R̃| ≈ 1, i.e. that
AM radio waves are nearly fully reflected by the
ionosphere. (At dusk, the ionosphere drops to
sufficiently low altitude that reflection off it en-
ables AM stations hundreds of miles away to be
received.)
Hint:
Use the amplitude reflection coefficient R̃ from
Problem -4. First show that

k̃2 = µω2ε0
(
1 +

ω2
w

ω2
0 − ω2 − iΓω

)
.

Then, for the underdamped case and for ω < ωp ,

argue that k̃ is almost pure imaginary, causing
the numerator of R̃ to be the complex conjugate
of the denominator.

50.
This problem is omitted intentionally.

51. Jones vectors.
For a plane transverse wave propagating in the ẑ
direction through a (not necessarily insulating)
material with constant ε and µ, a (co)sinusoidal
solution is represented by

�E(�r, t) = Re
(
�E0(x, y) ei(k̃z−ωt)

)
�H(�r, t) = Re

(
�H0(x, y) ei(k̃z−ωt)

)
,

where k̃ is the (not necessarily real) “wave vec-
tor” – here a scalar because we know it is
directed along ẑ. Faraday’s law causes �H0 to be
completely determined by �E0:

�H0 ≡ Z̃−1ẑ × �E0

=
k̃

µω
ẑ × �E0 ,
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so we focus on �E0 as the sole independent vari-
able. For a transverse wave �E0 has no z compo-
nent. Here we assume that the phase relationship
between E0x and E0y is fixed – the wave is fully

polarized. Then �E0 is a complex transverse vec-
tor, completely specified by four components. In
the Jones convention, all information carried by
�E0 except for its magnitude is written as a 2× 1
column vector with the x component on top:

�E0 =
(
E0x

E0y

)

≡ 1√|α2|+ |β2|

(
α
β

)
| �E0|

≡ �J | �E0| ,

where �J is the Jones vector. Jones vectors are
defined only within an overall phase (because
the absolute phase of an optical-frequency EM
wave can’t conveniently be measured); therefore
one has the freedom to set α equal to unity (un-
less it vanishes, in which case β is set to unity).
The above form involving the complex constants
α and β is a general Jones vector, corresponding
to elliptical polarization. More common Jones
vectors are(

1
0

) (
0
1

)
1√
2

(
1
−i

)
1√
2

(
1
i

)
,

corresponding, respectively, to linear x, linear y,
RH circular, and LH circular polarization.
(a.)
At z = 0, show (counterintuitively!) that the
electric field vector for RH polarized light pre-
cesses clockwise around ẑ, i.e. it precesses ac-
cording to the LH rule.
Hint:
Evaluate Re

(
�Je−iωt

)
and examine the time evo-

lution of the resulting x and y components.
(b.)
Suppose that a particular state of elliptical po-
larization has nonvanishing x and y electric field
components. Then, within an arbitrary overall
phase, it may be represented by the Jones vector

�J1 =
1√

1 + |β|2
(

1
β

)
,

where β is a complex constant. You wish to char-
acterize this state of polarization as “RH ellip-
tical” or “LH elliptical”, depending on whether
(at z = 0) the electric field vector precesses
clockwise or counterclockwise around ẑ. What
property of β would you use to decide whether
this state is RH or LH elliptical?
Hint:
Again evaluate Re

(
�J1e

−iωt
)

and examine the
time evolution of the resulting x and y com-
ponents. If the y component becomes negative
as t increases from 0, the elliptical polarization
is right-handed; if it becomes positive, the po-
larization is left-handed. What property of β
controls this behavior?
(c.)
For the conditions of part (b.), decompose �J1

into a linear sum (with real coefficients) of a
wave with linear polarization plus a wave with
RH circular polarization. Perform this same task
with “RH” replaced by “LH”. If you are success-
ful in both tasks, you might wonder whether
there really exists a unique association of RH or
LH behavior with �J1. Would this concern inval-
idate your answer to (b.)?
Hint:
For example, to decompose �J1 into a linearly
polarized wave plus a rhcp wave, take the dif-
ference (

1
β

)
− C

(
1
−i

)
.

Determine C such that this difference (the lin-
early polarized part) has elements that both
have the same phase.

52. Irradiance and Jones vectors.
Consider two transverse plane waves A and B
that move in vacuum and are combined together
(i.e. by a Michelson interferometer). The beams
have complex electric fields(

EA
0x

EA
0y

)
=

| �EA
0 |√|α|2 + |β|2

(
α
β

)
(
EB

0x

EB
0y

)
=

| �EB
0 |√|γ|2 + |δ|2

(
γ
δ

)
.

Express the combined irradiance

IA+B ≡ 〈�SA+B · ẑ〉 ,
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where �S is the Poynting vector and 〈 〉 is a time
average, as a function of the complex constants
α, β, γ, δ, and the uncombined irradiances IA
and IB of the individual beams.
Hint:
Start from the result of Griffiths’ Problem 9.11,
modified so that it is true in material as well as
vacuum:

〈�S〉 =
1
2µ

Re(�̃E × �̃B
∗
) .

Express Faraday’s law in terms of the complex

fields so that you can write �̃B
∗

in terms of �̃E
∗
.

You should obtain

�̃B
∗

=
k̃∗

ω
ẑ × �̃E

∗
.

By definition, the irradiance I ≡ 〈�S · ẑ〉 . For the
individual beams, you should obtain

IA,B =
1

2µω
Re

(
k̃∗ �̃EA,B · �̃E

∗
A,B

)
=

Re k̃
2µω

|�̃EA,B |2 .

For the combined beam (C), write �̃EC = �̃EA +
�̃EA . You should obtain

IC = IA + IB +
1

2µω
Re

(
k̃∗(�̃EA · �̃E

∗
B+ �̃EB · �̃E

∗
A)

)
= IA + IB +

Re k̃
µω

Re
(�̃EA · �̃E

∗
B

)
.

Finally, substitute the Jones vectors supplied for
�̃EA and �̃EB :

�̃EA,B = |�̃EA,B | �JA,B .

Solve for IC as a function of the variables re-
quired by the problem.

53.
(a.)
A set of N ideal linear polarizers L1 . . .LN

is arranged so that x̂ polarized light passes
through them in ascending order. The trans-
mission axis of polarizer n is oriented along

(x̂ cosφn+ŷ sinφn), where φn = πn
2N . In the limit

N →∞, deduce the Jones matrix for this set.
Hint:
Consider the effect on x̂ polarized light of the
first polarizer only. Use Pedrotti×2 (≡ P×2)
Eq. (14-15) with θ = π/2N . Taking N � 1,
show that the fractional reduction in electric
field amplitude is only of order N−2. In the
limit N → ∞, argue that the total reduction
in electric field amplitude after the infinite set
of ideal polarizers is negligible. Considering the
effect of this set of polarizers upon x̂ polar-
ized light, what is the left-hand column of the
corresponding Jones matrix? What about the
right-hand column?
(b.)
Consider a twisted nematic cell, as found in an
LCD display. It functions as a rotator (P×2
Eq. (14-21)). Show that if the rotator parameter
β = π

2 , the twisted cell will have the same effect
on x̂ polarized light as does the set of polarizers
described in (a.).
(c.)
Do the devices in (a.) and (b.) also have equiv-
alent effect on ŷ polarized light? Explain.
Hint:
Their effect is equivalent iff their Jones matrices
are the same.

54.
Apart from an experimentally irrelevant overall
phase, an ideal wave plate of thickness D with
phase retardation difference

δ ≡ (nx − ny)
ωD

c
,

having its slow axis along x̂, is represented by
the Jones matrix

MW(φ = 0) =
(
eiδ/2 0

0 e−iδ/2

)
.

If instead the wave plate has its slow axis along
(x̂ cosφ+ ŷ sinφ), show that it is represented by
the general Jones matrix

MW(φ) =(
cos δ

2 + i sin δ
2 cos 2φ i sin δ

2 sin 2φ
i sin δ

2 sin 2φ cos δ
2 − i sin δ

2 cos 2φ

)
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Note that δ = π
2 for a quarter-wave plate (qwp)

and δ = π for a half-wave plate (hwp), which
is equivalent to two qwps. Note also that, like
the general Jones matrix ML(φ) for the ideal
linear polarizer (P×2 Eq. (14-15)), MW(φ) is
symmetric and invariant to the transformation
φ → φ + π. However, unlike ML(φ), MW(φ)
is also unitary (M−1 = M†) with unit determi-
nant, preserving the irradiance.
Hint:
First make a 2D coordinate (passive) rotation
(x, y) → (x′, y′) so that the wave plate’s slow
axis is along x̂′. Then apply the Jones matrix
MW(φ = 0). Finally, rotate back to the (x, y)
frame.

55.
Use the result of the previous problem to do
Pedrotti×2 Problem 14-11. To get their result
you must assume, as they do [Eqs. (14-17)-(14-
20)], that the wave plate’s slow axis lies along
either the x or y axis.
Hint:
The initial state is described by P×2 Eq. (14-6).
After the final state is put in the same form (with
α replaced by α′), the final angle of inclination
is simply α′. Alternatively, P×2 Eq. (14-10)
supplies a general result for the final angle of in-
clination, useful even for elliptical polarization;
this problem involves only the linearly polarized
case for which ε = 0 in that equation.

56.
(a.)
Do Pedrotti×2 Problem 14-17. Does their Jones
matrix really convert any state of incident po-
larization to a finite irradiance of RH polarized
light? Explain.
(b.)
Devise a combination of ideal wave plate(s) and
polarizer(s) that, within a multiplicative con-
stant, yields the Jones matrix of part (a.). Sup-
ply the absolute magnitude of this constant.
Congratulations! You have invented an ideal ho-
mogeneous right-hand circular polarizer.
Hint:
As an alternative to multiplying random Jones
matrices until you find a combination that works,
you could reason physically. You want a device

that emits only RH circularly polarized (rhcp)
light. Recall the “points-of-the-compass” dia-
gram drawn in class: applying a qwp with slow
axis at +45◦ produces the transitions x̂ lp →
lhcp → ŷ lp → rhcp → x̂ lp (replace → by ←
for a qwp with slow axis at −45◦). Therefore,
for example, an x̂ linear polarizer upstream of
a qwp with slow axis at −45◦ emits only rhcp
light. However, this isn’t the complete answer,
because you want a device that emits some rhcp
light unless the incident beam is lhcp (see part
(a.)). What can you put upstream of the x̂ lin-
ear polarizer that emits some x̂ lp light unless
the beam incident upon it is lhcp?
(c.)
Show that the result of part (b.) functions also
as a right-hand circular analyzer, i.e. it fully
transmits RH circularly polarized light and fully
absorbs LH circularly polarized light.

57. Stokes vectors #1.
Using the standard definition of the complex
electric field �E0,

�E(z, t) = Re
(
�E0 exp (i(k̃z − ωt))) ,

consider the case in which the phase difference
between its x and y components

ε(t) = argE0x − argE0y

is not necessarily fixed, as would be the case
for fully polarized light, but rather is allowed to
vary with time – slowly with respect to ω−1, but
rapidly with respect to experimenters’ ability to
measure it. The Stokes vector S is defined by
the real elements

S ≡

⎛
⎜⎝
S0

S1

S2

S3

⎞
⎟⎠ ≡ Re k̃

2µω

⎛
⎜⎝
|E0x|2 + |E0y|2
|E0x|2 − |E0y|2
〈2 Re(E0xE

∗
0y)〉

〈2 Im(E0xE
∗
0y)〉

⎞
⎟⎠ ,

where 〈〉 denotes the time average.
(a.)
Show that

S =
Re k̃
2µω

⎛
⎜⎝
|E0x|2 + |E0y|2
|E0x|2 − |E0y|2
〈2|E0x||E0y| cos ε〉
〈2|E0x||E0y| sin ε〉

⎞
⎟⎠ .

24



Hint:
Without loss of generality, substitute

E0x = |E0x| ei(η(t)+ε(t)/2)

E0y = |E0y| ei(η(t)−ε(t)/2)

in the definition of S.
(b.)
The normalized Stokes vector S̄ is defined to be
the usual Stokes vector divided by S0 , so that its
topmost element is unity. Consider a fully polar-
ized beam in an arbitrary state of polarization
described by the general Jones vector

J =
1√|α|2 + |β|2

(
α
β

)
.

Show that the normalized Stokes vector for this
beam is

S̄ =
1

|α|2 + |β|2

⎛
⎜⎝
|α|2 + |β|2
|α|2 − |β|2
2 Re(αβ∗)
2 Im(αβ∗)

⎞
⎟⎠ .

Hint:
For a fully polarized beam, ε(t) in the re-
sult of part (a.) becomes a constant equal to
arg (α)− arg (β).
(c.)
Using the result of (b.) and your knowledge of
Jones vectors, show that fully linearly polarized
beams in the x̂, ŷ, 1√

2
(x̂ + ŷ), and 1√

2
(x̂ − ŷ)

directions are described, respectively, by the nor-
malized Stokes vectors

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠

⎛
⎜⎝

1
0
−1
0

⎞
⎟⎠ ,

and that fully circularly RH and LH polarized
beams are described, respectively, by the nor-
malized Stokes vectors

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠

⎛
⎜⎝

1
0
0
−1

⎞
⎟⎠ .

58. Stokes vectors #2.
Please refer to the notation and results of the
previous problem.
(a.)
For fully polarized (“p”) light (ε fixed), show that

S2
1 + S2

2 + S2
3 = S2

0 .

Hint:
Use the result of part (a.) of the previous prob-
lem; with ε fixed, it is unnecessary to average
over time.
(b.)
Natural (“n”) light is completely unpolarized.
It has |E0x| = |E0y|, but the phases of both
E0x and E0y vary randomly with time so that
〈cos ε〉 = 〈sin ε〉 = 0. For natural light, show
(conversely to (a.)) that

S1 = S2 = S3 = 0 .

59. Stokes vectors #3.
Please refer to the notation and results of the
previous two problems. Consider four devices:
(A) a grey filter passing half the incident irra-
diance; (B) an x̂ polarizer; (C) an 1√

2
(x̂ + ŷ)

polarizer; (D) a RH circular analyzer. After
passing through (only) device X, the beam has
irradiance IX. It can be shown that

S = 2

⎛
⎜⎝

IA
IB − IA
IC − IA
ID − IA

⎞
⎟⎠ .

Therefore, a Stokes vector can be completely de-
termined by measuring only irradiances. This re-
veals one extent to which Stokes “vectors” satisfy
vector properties. The additive property nor-
mally associated with a vector, Stot = SA + SB

for two beams A and B, holds only if their irradi-
ances rather than their amplitudes add, i.e. only
if the two beams are completely mutually inco-
herent. This is a total contrast to Jones vectors,
which can be defined only for fully polarized
beams and can be added only if the two beams
are completely mutually coherent.
(a.)
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Using the additive property for Stokes vectors in
mutually incoherent beams, show that an arbi-
trary beam

S =

⎛
⎜⎝
S0

S1

S2

S3

⎞
⎟⎠

is the (necessarily incoherent) superposition of a
fully polarized beam p and a natural-light beam
n. Show this by specifying the elements of the
constituent Stokes vectors Sp and Sn in terms of
the elements of the overall Stokes vector S.
Hint:
The bottom three elements of Sn vanish, so the
bottom three elements of Sp are the same as
those of S. Using the result of part (a.) of the
previous problem, deduce the top element of Sp.
(b.)
Define the degree of polarization V by

V ≡ Ip
Ip + In

.

For the above arbitrary beam, show that

V =

√
S2

1 + S2
2 + S2

3

S0
.

Hint:
From the original definition of S, one sees that its
top element is simply the irradiance of the beam.

Appendix: Mueller matrices
The Mueller matrices manipulate Stokes vectors
in the same way that Jones matrices manipu-
late Jones vectors. For an x̂ polarizer and for
a 1√

2
(x̂+ ŷ) polarizer, the Mueller matrices are,

respectively,

1
2

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎠ .

The Mueller matrices for a ŷ polarizer and for a
1√
2
(x̂− ŷ) polarizer are, respectively,

1
2

⎛
⎜⎝

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎞
⎟⎠ .

For a qwp with slow axis along x and for a
homogeneous right-hand circular polarizer, the
Mueller matrices are, respectively,

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠ .

The Mueller matrices for a qwp with slow axis
along y and for a homogeneous left-hand circular
polarizer are, respectively,

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ 1

2

⎛
⎜⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞
⎟⎠ .

60. Interference of two beams following
different paths.
Consider two beams A and B. At (early) plane
P , the relative properties of the two beams
are well understood; for example, a single laser
beam may be split into two. Between plane P
and (late) plane Q, the beams follow different
paths A and B through a nondispersive medium
(vgroup = vphase); by the time they reach plane Q
they have recombined. (For example, a Michel-
son interferometer may be interposed between
the two planes.) At P and Q define

physical �EA,B(P,Q) ≡ Re
(
�EA,B

P,Q e−iωt
)

(this is four equations). On the left-hand side are
physical fields that vary rapidly (≈ sinusoidally)
with time t; on the right-hand side are complex
fields �EA,B

P,Q having magnitudes that are fixed,
but phases that vary more slowly, over many
sinusoidal periods. This slow variation may oc-
cur separately for the x and y components of a
beam’s electric field – in which case the beam
is completely unpolarized – or it may occur in
lockstep for the x and y components together,
in which case the beam remains fully polarized.
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The optical phase shifts for paths A and B are
equal to

ωτA,B ≡
∫ Q

P

�kA,B · d�rA,B

τ ≡ τB − τA ,

where �kA,B(�r) is the wave vector for beam A or
B, respectively, and d�rA,B lies along the path
for beam A or B.
(a.)
The (undispersed) physical waves remain func-
tions of (�kA,B · �rA,B − ωt), even as these slow
phase variations occur. Use this fact to show that

physical �EA,B(Q)(t+ τA,B) =

physical �EA,B(P )(t) .

Hint:
Using the fact that the physical fields are func-
tions only of the argument (�kA,B · �rA,B − ωt) —

actually (
∫
�kA,B · d�rA,B − ωt) because the paths

are not straight — find a time t′ such that the
physical field argument at point Q and time t′

has the same value as the physical field argu-
ment at point P and time t.
(b.)
Using the result of part (a.), show that

�EA,B
Q (t+ τA,B) = �EA,B

P (t) exp (iωτA,B) .

Hint:
Express the physical fields in terms of the com-
plex fields.
(c.)
At any other time t′, the result of (b.) also holds.
Choose t′ = t− τ . Show that

�EB
Q(t+ τA) = �EB

P (t− τ) exp (iωτB) .

(d.)
The irradiance

I = 1
2

√
ε
µ | �EA + �EB |2

for the superposition of the two beams satisfies

2
√

µ
ε IP,Q = | �EA

P,Q|2+| �EB
P,Q|2+2Re

(
�EA∗

P,Q · �EB
P,Q

)

Using the results of (b.) and (c.), show that

IQ(t+ τA) = IA + IB +

+ 1
2

√
ε
µ 2 Re

(
�EA∗

P (t) · �EB
P (t− τ) exp (iωτ)

)
,

where IA,B are the (time-independent and space-
independent) single-beam irradiances.
Hint:
In the supplied expression for IQ(t+τA), express

the �EA,B
Q in terms of the �EA,B

P .
(e.)
Taking a long-time average (long compared to
the characteristic time over which the complex
electric field phases vary), obtain as a final step
the master equation for two-beam interference:

〈IA+B
Q 〉(τ) = IA + IB+

+ 1
2

√
ε
µ 〈2 Re

(
�EA∗

P (t) · �EB
P (t− τ) exp (iωτ)

)〉 ,
where 〈〉 denotes a long-time average, and IA+B

Q

is the combined irradiance at plane Q.
Hint:
Note that 〈IA+B

Q 〉(τ) is not the combined irradi-
ance at time τ . First, τ is not a time – it is the
difference of the optical phase shifts for paths B
and A. Second, 〈IA+B

Q 〉 can’t be a function of
time, because it is already a long-term time av-
erage. Rather, 〈IA+B

Q 〉(τ) is a time-independent
irradiance that depends on the path difference
that is parametrized by τ .

61.
Please refer to the notation and results of the
previous problem. Define the correlation ΓAB(τ)
as

ΓAB(τ) ≡ 1
2

√
ε
µ 〈 �EA∗

P (t) · �EB
P (t− τ) exp (iωτ)〉 ,

and define the degree of partial coherence γAB(τ)
as

γAB(τ) ≡ ΓAB(τ)√
IAIB

.

(a.)
Show that the result of the last part of the
previous problem can be written

〈IA+B
Q 〉(τ) = IA + IB + 2

√
IAIB Re γAB(τ) .
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(b.)
If the screen Q in a two-beam interference setup
deviates slightly from perfect perpendicularity
to the beams, deviations of order 10-100 oc-
cur in ωτ across the screen. For most sources
these deviations do not cause a significant change
in �EB

P (t − τ), but they do cause the phase of
exp (iωτ) to change dramatically. Correspond-
ingly there appear on the screen many light and
dark bands (“fringes”), at the center of which
the respective irradiances are Imax and Imin.
Define the fringe visibility V as

V ≡ Imax − Imin

Imax + Imin
.

If IA = IB , show that

V = |γAB(τ)| .

Hint:
In the middle of a bright (dark) fringe, γAB =
+|γAB | (γAB = −|γAB |) .
(c.)
As an experimentalist, suppose that you are re-
quired to analyze the extent to which a mystery
beam is polarized.

A standard approach would be to measure the
elements of its Stokes vector (by observing the
reduction in irradiance caused by four different
optical devices – see Problem 59); knowing the
Stokes vector, you could calculate the degree of
polarization V (Problem 59(b.)).

Instead you decide to send the beam into a
Michelson interferometer with two exactly equal-
length paths A and B. Observing the resulting
fringe pattern on screen Q, you measure the
fringe visibility V (as defined in part (b.) of this
problem).

Do you obtain any useful information about V
by measuring V? If so, what is the relationship
between the two?
Hint:
If there are slow random phase variations of the
complex field Ẽy with respect to Ẽx, a beam is
completely unpolarized. If such phase variations
were to begin, while the Michelson path lengths
remained exactly equal, how would the observed

fringe pattern change? That is, how would the
interference of ẼA

x with ẼB
x , and ẼA

y with ẼB
y

be affected?

62.
We wish to use the light of Betelgeuse (angu-
lar diameter 0.047 arc second), passed through a
600 nm filter, as the source for a double-thin-slit
Young’s interference experiment.
(a.)
Assuming an adequately narrow filter bandpass,
roughly estimate the maximum slit separation
(in m) that would yield an interference pattern
which isn’t too badly washed out, i.e. with a
fringe visibility V of order 1

2 .
Hint:
This part is a transverse coherence problem, in-
volving a source rendered monochromatic by the
narrow filter. In the paraxial approximation,
first consider the classical two-thin-slit irradi-
ance pattern I(ψ) ∝ cos2 kd

2 ψ that would occur
if Betelgeuse were a point source. Now allow
the two (point) halves of Betelgeuse to sepa-
rate. This causes the two halves of the classical
irradiance pattern likewise to move apart. As
they do so, the primary irradiance maximum (at
ψ = 0) and first minimum (at ψ = π/kd) remain
at the same positions, but become less extreme.
Parametrize this separation by a phase ±δ that
is added to the argument of cos2. Solve for δ such
that V = 1

2 ; then relate 2δ to the (supplied) an-
gular separation of Betelgeuse’s two halves. This
fixes the slit separation d.
(b.)
Assuming an adequately small slit separation,
roughly estimate the maximum filter bandpass
(in nm) that would allow us to observe at least
20 fringes. With this choice of bandpass, what
is the coherence length of the transmitted light?
Hint:
This part is a temporal coherence problem, in-
volving a slit separation so small that, with a
monochromatic source, a very large number of
fringes would be visible. Call the central (bright-
est) fringe the 0th fringe maximum. About 10
fringes to either side, the pattern is mostly
washed out because the source is polychromatic.
This occurs when the 10th fringe maximum of
light with wavelength λ0 −∆λ/2 coincides with
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the 10th fringe minimum of light with wave-
length λ0 + ∆λ/2. Use this fact to relate ∆λ to
λ (see the related discussion in {p×2 ed2, ed3}
section {11-2, 8-2}). The coherence length of the
transmitted light follows from {p×2 ed2, ed3}
Eq. {(12-18), (9-18)}.

63.
A monochromatic beam traveling in medium “0”
is normally incident upon a substrate “T”. A sin-
gle film “1” is interposed between the two media.
The refractive indices are, respectively, n0, n1,
and nT . You may assume that all materials have
the same magnetic permeability.
(a.)
Show that a film of thickness λ1/4 (where λ1

is the wavelength of light in the material i of
which the film is made) will reduce the re-
flectance of the substrate to zero, provided that
n1 =

√
n0nT .

Hint:
Remember that λ1 = λvacuum/n1. This allows
the film’s phase advance δ (e.g. in {p×2 ed2,
ed3} Eq. {(19-24), (22-24)}) to take the simple
value π/2. Substitute the resulting transfer ma-
trix elements in the standard reflection formula,
e.g. {p×2 ed2, ed3} Eq. {(19-36), (22-36)}.
(b.)
Prove that interposing a single film of thickness
λ1/4 will always reduce the reflectance of the
substrate, provided that n0 < n1 < nT .
Hint:
After obtaining the amplitude reflectance r0,b for
the cases (no film) and (b), form the ratio r20/r

2
b

and (tentatively) set it > 1. Applying brute
force, multiply through by all denominators and
make many cancellations. Distill the resulting
inequality into one that is obviously true, given
that n0 < n1 < nT . To check your algebra, keep
in mind that every inequality should become an
equality if n1 is set to n0 or n1 is set to nT (as
these cases correspond to no film at all).

64.
Referring to the conditions of the previous prob-
lem, consider next the case of three films (“1”,
“2”, and “3”) interposed between the two me-
dia, such that film 1 adjoins medium 0 and film
3 adjoins medium T . Again, assume that all ma-

terials have the same magnetic permeability.
(a.)
Suppose that each film has thickness λi/4 (where
λi is the wavelength of the beam in the partic-
ular material of which that film is made). Show
that the reflectance of the substrate is reduced
to zero when

n1n3

n2
=
√
n0nT .

Hint:
After you take the product of the transfer ma-
trices, the result should have diagonal elements
that vanish.
(b.)
An advantage of using three films instead of one
(as in the previous problem) is that the band of
wavelengths over which the reflectance is heavily
suppressed can be made much broader. (Your
expensive eyeglasses are coated with at least two
films.) According to {Pedrotti×2 ed2, ed3} Fig.
{19-7, 22-7}, this benefit may be enhanced fur-
ther if the middle film (2) is doubled in thickness
from λ2/4 to λ2/2. In this case, what condition
on n0, n1, n2, n3, and nT reduces the reflectance
to zero?
Hint:
Here the product of transfer matrices should be
diagonal.

65.
Consider a high-reflectance stack of the type
depicted in {Pedrotti×2 ed2, ed3} Fig. {19-8,
22-8}. For specificity, assume that the stack
consists of six double layers of MGF2 (n = 1.38)
and ZnS (n = 2.35). For simplicity, assume that
the medium from which the light enters the stack
(medium 0) and the medium into which the light
exits the stack (medium T ) are vacuum. Again,
assume that all materials have the same mag-
netic permeability.
(a.)
Numerically, what fraction T of the incident ir-
radiance is transmitted by the stack?
Hint:
Consider one double layer. When both films in
the double layer have thickness λi/4 (where λi

is the wavelength in the medium of layer i), the
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product of the transfer matrices for the two lay-
ers is diagonal. Therefore the transfer matrix
for N double layers is simply the transfer matrix
for one layer raised to the N th power (see {p×2
ed2, ed3} Eq. {(19-50), (22-50)}).
(b.)
The stack is now modified as follows: the
upstreammost three double layers are flipped
around so that the stack indices are L(ow) H(igh)
L H L H H L H L H L. This is a Fabry-Perot in-
terference filter. It has a transmission maximum
at the wavelength for which it was designed, as
opposed to the transmission minimum achieved
by the configuration of part (a.). Calculate
the fraction T of the incident irradiance that is
transmitted by the modified stack.
Hint:
When the order of the films is inverted, the diag-
onal elements of the transfer matrix for the dou-
ble layer are interchanged. To what extremely
simple form does the N -element transfer matrix
reduce?

66. Green’s theorem.
Denote by �G a vector field, and start from the
divergence theorem∫

∇ · �Gdτ =
∮
�G · n̂ da ,

where n̂ is the (outward) direction of the surface
area element d�a, and the left-hand integral ex-
tends over the volume enclosed by the right-hand
surface.
(a.)
Substituting �G = V∇U , where V and U are
scalar fields, show that∫(∇V · ∇U + V∇2U

)
dτ =

∮
V
∂U

∂n
da .

Hint:
Use the fact that

(∇U) · n̂ ≡ ∂U

∂n
.

(b.)
Show that∫(
V∇2U − U∇2V

)
dτ =

∮ (
V
∂U

∂n
− U ∂V

∂n

)
da .

Hint:
Repeat part (a.) with �G = U∇V . Then sub-
tract one of the two resulting equations from the
other.
(c.)
If V and U both satisfy the scalar Helmholtz
equation,

(∇2 + k2
)
(U, V ) = 0 ,

where k is a constant, show that

0 =
∮ (

V
∂U

∂n
− U ∂V

∂n

)
da .

This is Green’s theorem for solutions to the
scalar Helmholtz equation.
Hint:
Substitute k2 U, V for ∇2 U, V in the result of
part (b.).

67. Fresnel-Kirchoff integral theorem.
Please use the notation and results of the previ-
ous problem.
(a.)
Consider a closed surface consisting of an inner
sphere of radius R, centered at the origin, and
an arbitrary closed outer surface A. Apply the
result of part (c.) to the combined surface. Take
V to be an inward-propagating spherical wave

V = V0
ei(kr+ωt)

r
.

In the limit R→ 0, show that

U(0) = 1
4π

∮ (eikr

r

∂U

∂n
− U ∂

∂n

(eikr

r

))
da ,

where the integral is taken only over A. This is
the Kirchoff integral theorem.
Hint:
Factoring out V0 e

iωt , this is equivalent to show-
ing that, in the limit R → 0, the integral over
the inner spherical surface reduces to −4π U(0).
(Note that the normal to this surface is −r̂ .)
(b.)
Now punch a hole (“aperture”) in A. Place a
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point source S outside A; the origin (now called
“observation point P”) still lies inside A. The
source radiates an outward-propagating scalar
spherical wave

U = U0
ei(kr′−ωt)

r′
,

where �r ′ is a vector from S to a point in space.
Using the result of (a.), assume that the opac-
ity of the remainder of A allows the integral to
be carried out over only the aperture (“ap”). In
the far zone limit kr′, kr � 1, show that

UP =
−ikU0e

−iωt

4π

∫
ap

eik(r+r′)

rr′
(
r̂ · n̂− r̂′ · n̂)

da ,

where �r (�r′) is a vector from P (point S) to a
point on the element of aperture da, and n̂ is
the (outward from P ) normal to da. This is the
Fresnel-Kirchoff integral theorem; it is the start-
ing point for the study of diffraction in the scalar
field approximation.
Hint:
Substitute

U = U0
ei(kr′−ωt)

r′

in the result of part (a.) and perform the indi-
cated differentiation. In analogy to the hint to
part (a.) of the previous problem, note that

∂

∂n

eikr′

r′
=

(∇′ e
ikr′

r′
) · n̂ ,

where ∇′ is the gradient with respect to the
coordinate �r ′.

68. Knife-edge diffraction.
A plane wave of initial irradiance I0 propa-
gating along ẑ is incident upon a semi-infinite
totally absorbing screen lying in the z = 0 plane.
The screen extends from −∞ < x < ∞ and
−∞ < y < 0. An observer stationed at (0, 0, z),
where kz � 1, detects an irradiance I ′. What is
I ′/I0, and why?
Hint:
Using z = 0 as the aperture plane, equate the
optical disturbance UP to a Fresnel-Kirchoff in-
tegral over that plane, (a.) for the case in which

there is no absorber, and (b.) for the knife-edge
case in which the absorber covers y < 0. Con-
sidering that the source is a plane wave with no
y dependence, and that the observer is stationed
at the up-down symmetry point y = 0, how is
integral (b.) related to integral (a.)? How is U
related to the irradiance?

69. Fourier diffraction.
The convolution of two functions f(x) and g(x),
denoted by (f ⊗ g)(x), is defined by

f ⊗ g ≡
∫ ∞

−∞
dx′ f(x′) g(x− x′) .

Define the Fourier transform Fµ

(
g(x)

)
by

Fµ

(
g(x)

) ≡ ∫ ∞

−∞
dx g(x) e−iµx .

(a.)
As a warmup, prove that

f ⊗ g = g ⊗ f .

Hint:
Substitute u′ = x − x′ in the convolution inte-
gral.
(b.)
For use in part (d.), prove that

Fµ

(
f(x)⊗ g(x)) = Fµ

(
f(x)

)Fµ

(
g(x)

)
.

Hint:
Write Fµ

(
f(x) ⊗ g(x)

)
as a double integral∫

dx
∫
dx′ . . . . Reverse the order of integra-

tion and substitute u = x − x′. Express the
result as the product of an integral over u of
purely u-dependent terms, × an integral over x′

of purely x′-dependent terms.
(c.)
If f(x) is the aperture function for a pair of thin
slits separated by d,

f(x) ∝ δ(x− d
2 ) + δ(x+ d

2 ) ,

and if g(x) is the aperture function of a single
slit of thickness a,

g(x) ∝ θ(x+ a
2 )− θ(x− a

2 ) ,
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show that f ⊗ g is the aperture function corre-
sponding to two slits of thickness a, separated
(centerline-to-centerline) by d.
Hint:
As your intuition develops, this proposition will
become obvious, but here you are asked to show
it formally. Do so by carrying out the convo-
lution integral, evaluating the integrand at the
points where one of the δ-functions is nonzero.
Note that the θ-function θ(u) steps from 0 at
u < 0 to 1 at u > 0.
(d.)
In the Fraunhofer approximation, where �r ′ and
�r (cf. Problem 67) are paraxial and the wave-
front curvature across the aperture is negligible,
the scalar “optical disturbance” amplitude is

UP (µ, ν) ∝
∫ ∞

−∞
dx

∫ ∞

−∞
dy g(x, y)e−i(µx+νy) ,

where UP is measured at the transform plane
(X,Y ), the aperture function g is measured at
the aperture plane (x, y), µ and ν are defined by

µ ≡ kX

f
ν ≡ kY

f
,

and f is the focal length of the thin field lens lo-
cated an equidistance f from the aperture and
transform planes. Write down the diffraction
pattern

IN (ψx, ψy)
I1(0, 0)

for N slits of center-to-center separation ∆x = d
and thicknesses δx = a and δy = b, where

(sin)ψx ≡ X

f

(sin)ψy ≡ Y

f
.

You may use the fact – directly obtainable by
applying the Fourier transform – that

IN (ψx)
I1(0)

= N2 sin2
(

Nkd
2 sinψx

)
(
N sin (kd

2 sinψx)
)2

for N thin slits of infinite length and separation
d, and that

I(ψx)
I(0)

= sinc2
(

ka
2 sinψx

)

for a single slit of infinite length and thickness a.
Hint:
Building on the result of part (c.), use your intu-
ition to express the aperture function for N thick
slits as the convolution of the aperture function
for N thin slits and the aperture function for
one thick slit. Also use the fact that the Fourier
transform of the product of two functions of dif-
ferent variables (x and y here) is the product of
the Fourier transforms. Then exploit the result
of part (b.).

70. Quadruple slit.
Consider four equally spaced long (∆y = ∞)
thin slits, located at x = ±d

2 and x = ±3d
2 . As

usual, tanψx = dx
dz of the outgoing wavefront.

(a.)
Write down the standard result

R(ψx) ≡ I(ψx)
I(ψx = 0)

for the Fraunhofer diffraction pattern from N =
4 equally spaced thin slits.
Hint:
See part (d.) of the previous problem.
(b.)
Consider the full diffracted amplitude to be the
superposition of the diffracted amplitudes from
a pair of slits at x = ±d

2 and a pair of slits
at x = ± 3d

2 . Write down R(ψx) as a quantity
proportional to the modulus2 of the sum of the
diffracted amplitudes from the two pairs of slits.
Hint:
The standard result for a pair of thin slits of full
separation D (Young’s experiment) is

U(ψx) ∝ cos (kD
2 sinψx) .

(c.)
Consider the aperture function for these four
slits to be the convolution of a pair of δ-functions
separated by d and another pair of δ-functions
separated by 2d (both pairs are symmetric about
x = 0). Write down R(ψx) as the product of
two two-slit R’s.

32



(d.)
Are your answers to parts (a.), (b.), and (c.)
equivalent? Why or why not?
Hint:
Do all three methods represent valid approaches
to the same physical problem?

71. Fuzzy thick slit.
Please use the notation and results of Problem
70. Consider a trapezoidal aperture function

g(x) = 1 |x| < a
2

= 0 |x| > a

= 2
a (x+ a) − a < x < −a

2

= 2
a (a− x) a

2 < x < a .

Fraunhofer conditions apply. Under these condi-
tions, calculate the slit’s diffraction pattern

R(ψx) ≡ I(ψx)
I(ψx = 0)

.

Hint:
The convolution of two identical slits of thick-
ness D

2 is an isosceles triangle of base D. This
could be considered to be a trapezoid with a
plateau of zero length. How would you adjust
the two slit thicknesses to obtain the trapezoid
base and plateau that the problem specifies?

72. Thick slits with wave plates.
A linearly (x̂) polarized plane EM wave traveling
along ẑ is incident on an opaque baffle located in
the plane z = 0. The baffle has two slits cut in
it, which are of infinite extent in the ŷ direction.
In the x̂ direction, the slit widths are each a and
their center-to-center distance is d. (Obviously
d > a, but you may not assume that d� a.) The
top and bottom slits are each an equal distance
from x = 0. The diffracted image is viewed on a
screen located in the plane z = L, where L� d;
also λL� d2, where λ is the EM wavelength.

Quarter-wave plates are placed in each slit. They
are identical, except that the top plate’s “slow”
(high-index) axis is along (x̂+ ŷ)/

√
2 (+45◦ with

respect to the x̂ axis), while the bottom plate’s
slow axis is along (x̂− ŷ)/√2 (−45◦ with respect
to the x̂ axis).

(a.)
What is the state of polarization of the diffracted
light that hits the center of the screen, at
x = y = 0? Explain.
Hint:
Divide each thick slit into N contiguous thin
slits, where N → ∞. Out of N , consider
the nth-above-the-origin together with the nth-
below-the-origin thin slits as sources of diffracted
light. When observed at the symmetry point
x = 0, the optical paths from these two thin slits
are the same. Therefore the polarization of the
light from these two thin slits will be given by
the sum of the Jones vectors for the light emerg-
ing from each slit.
(b.)
At what diffracted angle ψx does the first mini-
mum of the irradiance occur?
Hint:
Does the light from the top slit interfere with
the light from the bottom slit? See the result of
problem 52.
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