
University of California, Berkeley
Physics 110B Fall 2008 (Strovink)

SOLUTION TO FINAL EXAMINATION

Directions: Do all six problems, which have unequal weight. This is a closed-book closed-note
exam except for Griffiths, Pedrotti, a copy of anything posted on the course web site, and anything
in your own original handwriting (not Xeroxed). You may use the result of any assigned problem-set
problem without proving it. Calculators, palmtops, laptops, and cellphones should be turned off.
Use a bluebook. Do not use scratch paper – otherwise you risk losing part credit. Show all your
work. Cross out rather than erase any work that you wish the grader to ignore. Justify what you do.
Express your answer in terms of the quantities specified in the problem. Box or circle your answer.

Problem 1. (20 points)
Write down a master equation that is equivalent
to the pair of Maxwell’s equations in vacuum
that involve sources. You need not prove this
equivalence. Your equation must be manifestly

covariant, with no gauge condition imposed. Any
four-tensors that you use must further be defined
in terms of four-vectors. Correspondingly, any
four-vectors that you use (either in the master
equation or in defining any four-tensors) must
further be defined in terms of three-vectors and
scalars.

Solution:

∂µF
µν = µ0J

ν with

Fµν ≡ ∂µAν − ∂νAµ

∂µ ≡
( ∂

c ∂t
,−∇

)

∂µ ≡
( ∂

c ∂t
,+∇

)

Aµ ≡
(V

c
, ~A

)

Jµ ≡ (cρ, ~J) .

Problem 2. (45 points)
At t = 0 a relativistic point particle with rest
mass m and charge q has velocity

c~β(t = 0) = x̂ cβ0 ,

where β0 is a positive constant that is not ≪ 1 .
The particle has been and continues to be im-
mersed in a uniform static magnetic field

~B = ẑ B0 .

During the period t < 0, no electric field is
applied.

(a.) (5 points)

Denote by c~β⊥ the (vector) portion of the parti-
cle’s velocity that is perpendicular to the ẑ axis.
For t < 0, is ~β⊥ conserved? Explain.

Solution: The Lorentz force is nonzero, since
~v and ~B are neither zero nor mutually paral-
lel. Furthermore, since ~B lies along z, a nonzero
Lorentz force acts in the perpendicular direc-
tion. Therefore ~p⊥ varies. On the other hand,
according to the Lorentz force from a magnetic
field, the rate of change of ~p⊥ is perpendicular
to ~p⊥. Thus the magnitude of ~p⊥ cannot vary,
so its direction must vary. Therefore ~β⊥ cannot
be conserved.

(b.) (5 points)

For t < 0, is |~β⊥| conserved? Explain.

Solution: Because magnetic forces can do no
work, E(= γmc2) and therefore γ is conserved.
Since β‖ = 0 for parts (a.)-(c.), γ is a function

only of |~β⊥|, which likewise must be conserved.

(c.) (10 points)
For t < 0, write an expression for |~p⊥| , the ab-
solute magnitude of the (vector) portion of the
particle’s momentum that is perpendicular to
the ẑ axis.

Solution: For t < 0, |~β⊥| ≡ β0 from part (b.),
and

|~p⊥| ≡ γ|~β⊥|mc

=
β0

√

1 − β2
0

mc .
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(d.) (10 points)
For the later period t > 0 , a uniform static
electric field

~E = ẑ 1
2
cB0

is applied (in addition to the magnetic field).
It causes the point charge’s motion to become
more complicated.

As a strategy for determining this motion, is it
possible to transform to a Lorentz frame S ′ in
which one of the static fields vanishes? If so,
which field will vanish? If not, why not?

Solution: Because ~E · ~B is a Lorentz invariant
that does not vanish in the lab frame, neither
field can vanish in any Lorentz frame.

(e.) (15 points)
For t > 0, after the electric field is applied, is
|~β⊥| conserved? If so, why? If not, does |~β⊥|
increase with time, or does it decrease? Why?

Solution: Now that the particle has acquired
a nonzero velocity in the z (‖) direction, the
magnitude of the transverse momentum is

|~p⊥| =
|~β⊥|

√

1 − β2
⊥ − β2

‖

mc .

Because the perpendicular part of the Lorentz
force remains perpendicular to ~p⊥, |~p⊥| is still
conserved. Therefore, when β2

‖ in the denomina-

tor increases due to the electric field, |~β⊥| must
decrease.

Problem 3. (35 points)
At a symmetric positron-electron collider, a
positron of charge +e, travelling with a (given)
Lorentz factor γ ≡ (1 − v2/c2)−1/2 in the +ẑ di-
rection, collides at t = 0 with an electron having
the same γ, travelling in the −ẑ direction. They
decelerate instantaneously and stick together.

(a.) (20 points)
At t0 = 0 an observer located at (x, 0, 0), with

x > 0, measures the magnetic field ~B0 produced
by both the positron and electron. Calculate the
magnitude and direction of this field.

Solution: The observer, not yet aware that
the electron and positron have collided, sees

a “bottle-brush” electric field from the positron,
together with its associated magnetic field. Since
both its charge and its direction are reversed, the
electron produces a cancelling electric field, but
the same magnetic field as the positron. So we
just double the positron’s magnetic field.

From the positron, the “bottle-brush” electric
field is

~E =
e

4πǫ0

γ~r

(γ2r2‖ + r2⊥)3/2
.

With r‖ = 0 and ~r⊥ = x̂x, this becomes

~E =
e

4πǫ0

γx̂

x2
.

Twice the positron’s magnetic field is 2(~β/c)× ~E,
or

~Btot =
e

2πǫ0c

γβŷ

x2
.

(b.) (15 points)
At t1 = x/c the same observer measures the

dominant component of the magnetic field ~B1

produced by both the positron and electron.
Calculate the direction B̂1 of this field.

Solution: At time t1 the observer sees mainly
the (infinite) radiation fields associated with the
particles’ infinite deceleration. Again the mag-

netic fields from the positron and electron point
in the same direction.

The positron’s acceleration field ~Ea is directed

along x̂× [(x̂− ~β)×
~̇
β], or x̂× [x̂×(−ẑ)] = ẑ. Cor-

respondingly its magnetic field is directed along
x̂× Êa = −ŷ, opposite to the earlier field.

Problem 4. (30 points)
A plane electromagnetic wave is described by

E(z, t) = Re
(

Ẽ exp
(

i(kz − ωt)
)

)

,

where

Ẽ = E0

(

(2 − i)x̂ + (1 − 2i)ŷ
)

,

and E0, k, and ω are real constants. A linear
polarizer is placed in the beam, and oriented so
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that the largest possible fraction of the original
beam’s irradiance is transmitted. What is that
fraction?

Solution:

The beam is described by the (unnormalized)
Jones vector

J =

(

2 − i
1 − 2i

)

.

A linear polarizer with transmission axis oriented
along the x̂ direction has the Jones matrix

M(0) =

(

1 0
0 0

)

.

If the polarizer’s transmission axis is oriented at
angle φ with respect to the x̂ direction, it is
represented by the Jones matrix

M(φ) = R−1M(0)R

=

(

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

)

,

where the two-dimensional rotation matrix is

R ≡

(

cosφ sinφ
− sinφ cosφ

)

.

Upstream of the polarizer, the beam irradiance
I is proportional to

I ∝ J†J

= ( 2 + i 1 + 2i )

(

2 − i
1 − 2i

)

= (4 + 1) + (1 + 4) = 10 .

Downstream of the polarizer, the irradiance I ′ is
proportional to

I ′ ∝ (MJ)†MJ

= J†(M†M)J .

But M†M = M , as can easily be verified:
M† = M , and adding a second ideal polar-
izer does nothing beyond the effect of the first,
so M2 = M . Thus

I ∝ J†MJ

= ( 2 + i 1 + 2i )×

×

(

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

)(

2 − i
1 − 2i

)

= 5 + 8 sinφ cosφ

= 9 (max)

when φ = π/4. Therefore, at maximum, I ′/I =
9/10.

Problem 5. (35 points)
A plane wave U0 cos (kz − ωt) is incident nor-
mally on a screen. Fraunhofer conditions apply.
The diffracted wave is observed from z → ∞ at
various angles ψ with respect to the z axis.

(a.) (15 points)
Assume that the screen has three long paral-
lel slits with equal spacing b and equal neg-
ligible width. Compute the irradiance ratio
I(ψ)/I(ψ = 0).

Solution:

In analogy to the standard double slit problem,

U(ψ) ∝ 1 + eiβ + e−iβ ,

where β = kb sinψ. Therefore

U(ψ) ∝ 1 + 2 cosβ

I(ψ)

I(0)
=

(1 + 2 cosβ)2

9
.

This result is equivalent to the equally accept-
able standard result 1

9
sin2 (3γ)/ sin2 γ, where

γ = β/2; for full credit this standard result may
simply be written down.

(b.) (20 points)
Instead assume that the screen has five long par-
allel slits with equal spacing b. The slit widths
are still negligible; however, they are a function
of the slit location, so that the five slit areas
vary according to the ratio 1:2:3:2:1. Compute
the irradiance ratio I(ψ)/I(ψ = 0).

Solution:

This configuration is equivalent to a triple-
superposition of the triple-slit problem in (a),
with the characteristic spacing of the superpo-
sition equal to the characteristic spacing of the
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slit. Therefore it is a convolution of the ar-
rangement in (a) with itself. Under Fraunhofer
conditions, the image is a Fourier transform of
the aperture function, and the Fourier transform
of a convolution is the product of the individual
Fourier transforms. Therefore

I(ψ)

I(0)
=

(1 + 2 cosβ)4

81
.

This result may also be obtained by the brute-
force methods of (a).

Problem 6. (35 points)
A monochromatic plane wave is normally inci-
dent on an aperture plane (with different aper-
ture functions for parts (a.) and (b.)). Fraun-
hofer conditions do not apply. An observer is sta-
tioned at (0, 0, R2/λ), where λ is the wavelength,
and R is a constant. In each part, calculate the
ratio Iaperture/Iopen of irradiances seen by the ob-
server with/without the aperture plane in place.

(a.) (15 points)
Here the aperture plane consists of a screen that
is opaque except for a semicircular (half) hole of
radius R, centered on the z axis.

Solution:

The half-hole radius corresponds to the first
Fresnel zone. If it were a full zone (360◦ cir-
cumference), the optical disturbance U1 from the
first zone would be twice the unobstructed value
U0; however, since half (180◦) of the zone is
blocked, the optical disturbance is equal only to
U0. Therefore

Iaperture

Iopen

= 1 .

(b.) (20 points)
Here the aperture plane consists of a semicircu-
lar (half) penny of radius R, centered on the z
axis; the rest is open.

Solution:

Half of the azimuth (“I”) is open, while the other
half (“II”) is open except that its first Fresnel
half-zone is blocked. As discussed in class, the
magnitude of the optical disturbance from an in-
finite sum of adjacent zones is independent of the

radius at which the first zone is defined to begin.
(This argument was used to explain the bright
point of white light on the axis downstream of a
penny). Therefore

|UI | = |UII | .

What is the relative phase of UI vs. UII? Since
each zone is 180◦ out of phase with the next, and
“I” begins with zone 1 while “II” begins with
zone 2, UI and UII are 180◦ out of phase with
each other. Therefore

UI = −UII

Iaperture

Iopen

=
∣

∣

∣

UI + UII

U0

∣

∣

∣

2

= 0 .

An alternative approach takes advantage of
Babinet’s principle for complementary screens,
which requires that Ua + Ub = U0 (where “a”
and “b” refer to the complementary screens of
parts (a.) and (b.)). From part (a.), Ua = U0.
Therefore Ub = 0.
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