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SOLUTION TO EXAMINATION 2

Directions: Do all 3 problems, which have unequal weight. This is a 50-minute closed-book closed-
note exam except for Griffiths and Pedrotti, a copy of anything posted on the course web site, and
anything in your own handwriting (not a Xerox of someone else’s writing). You may use the result of
any assigned problem-set problem without proving it. Calculators, palmtops, laptops, and cellphones
should be turned off. Use a bluebook. Do not use scratch paper – otherwise you risk losing part
credit. Show all your work. Cross out rather than erase any work that you wish the grader to ignore.
Justify what you do. Express your answer in terms of the quantities specified in the problem. Box
or circle your answer.

Problem 1. (25 points)
Consider a pair of coaxial circular rings of radius
b, separated by a distance

√
2 b. Put the origin on

their axis, halfway between the rings. Each ring
carries a uniformly distributed static charge q ;
a static point charge −2q is placed at the origin.

In most directions, at distance r ≫ b from the
origin, the static electric field is found to vary
approximately as r−n. What is n, and why?
Solution:

Take ẑ to be the ring axis. Since the charge dis-
tribution is cylindrically symmetric about that
axis, all m 6= 0 moments vanish. In the usual
spherical polar coordinates, the m = 0 moments
are proportional to the integral of Pl(cos θ) over
the charge distribution. Pl(cos θ) is odd in cos θ
when l is odd, while the charge distribution is
even. Therefore all odd-l m = 0 moments vanish.
Of course the monopole moment also vanishes in
the absence of net charge.

The m = 0 quadrupole moment q20 is propor-
tional to

q20 ∝
∫

dτ ρ r2P2(cos θ)

∝
∫

dτ ρ r2(3 cos2 θ − 1)

=

∫

dτ ρ (3z2 − r2) .

However, the rings of charge lie at z = ±
√

1

2
b

and at r =
√

b2 + z2 =
√

3

2
b, so the integrand

and q20 vanish. Thus the lowest nonvanishing
multipole is the m = 0 hexadecapole moment

q40, for which V ∝ r−5 and

| ~E| ∝ r−6 .

Problem 2. (35 points)
The irradiance I0 of a mystery light beam is at-
tenuated by each of four devices, applied one
at a time: (A) a grey filter passing half the
incident irradiance; (B) an x̂ polarizer; (C) a
1√
2
(x̂ + ŷ) polarizer; and (D) a device consisting

of a quarter-wave plate (qwp) with slow axis at
+45◦ to x̂, followed by an x̂ polarizer, followed
by a qwp with slow axis at −45◦ to x̂. The at-
tenuated irradiances observed are, respectively,

IA = 1

2
I0

IB = 1

2

(

1 + 1√
2

)

I0

IC = 1

2
I0

ID = 1

2

(

1 + 1√
2

)

I0 .

With devices (A) through (D) no longer in the
picture, device (E) is inserted into the beam. It
is the same as device (D) except that the x̂ po-
larizer is rotated to become a ŷ polarizer. What
irradiance IE is observed?
Solution:

For devices (D) and (E), the wave plate up-
stream of the linear polarizer cannot reduce I0,
the irradiance incident upon the polarizer (wave
plates have det (MW ) ≡ 1). In general, irrespec-
tive of the degree of polarization,

I0 ∝ 〈E2

x〉 + 〈E2

y〉 ,



where Ex,y are the plane wave’s physical field
components and 〈〉 denotes the time average.
The ideal x̂ polarizer that is part of device (D)
admits all of 〈E2

x〉 that is incident upon it, while
absorbing all of 〈E2

y〉. Conversely, the ideal ŷ
polarizer that is part of device (E) admits all of
〈E2

y〉 while absorbing all of 〈E2

x〉. Therefore the
sum of the irradiances admitted by devices (D)
and (E) is simply the total irradiance I0:

ID + IE = I0

IE = I0 − 1

2

(

1 + 1√
2

)

I0

= 1

2

(

1 − 1√
2

)

I0 .

With more effort, this problem alternatively can
be solved by using the given IA,B,C,D to obtain
the beam’s Stokes vector S. In one approach,
the Mueller matrix (appendix to Problem 59) for
a left-hand circular analyzer (device (E)) can be
applied to S; the first element of the resulting S ′

is IE . In an even more tedious approach, the re-
sult of Problem 58 can be used to demonstrate
that the beam is fully polarized, and the result
of Problem 57, with some algebra, can be used
to deduce the elements α and β of the beam’s
Jones vector J , within an overall phase. Finally,
the Jones matrix for a left-hand circular ana-
lyzer (Problem 56) can be applied to J to yield
J ′; the ratio IE/I0 is equal to (J ′)†J ′/J†J .

Problem 3. (40 points)
A monochromatic beam traveling in medium “0”
is normally incident upon a substrate “T”. Two
films (“1”and “2”) are interposed between the
two media, such that film 1 adjoins medium 0
and film 2 adjoins medium T . The refractive
indices are frequency-independent and equal, re-
spectively, to n0, n1, n2, and nT , with n0 6= nT .
You may assume that all materials are insulat-
ing and nonabsorbing, and that they all have the
same magnetic permeability. Film 2 has thick-
ness λ2/4 (where λ2 is the wavelength of the
beam in the particular material of which film 2
is made). The thickness l1 of film 1 is nonzero.

(a.) (20 points)
In this part, the refractive index n1 of film 1 is
not supplied by the problem, but its thickness
is specified to be equal to λ1/4 (where λ1 is the

wavelength of the beam in the particular mate-
rial of which film 1 is made). Identify a combina-
tion {n1, n2} for which the full beam irradiance is
transmitted without any reflection. (Any correct
answer, properly justified, receives full credit.)
Solution:

If film 2 is given the same index

n2 = nT

as the substrate, it may be considered to be part
of the substrate. The remaining single film 1 is
1

4
wavelength thick; to yield zero reflectance it

should have
n1 =

√
n0nT

as in Problem 63(a).

(b.) (20 points)
In this part, the thickness l1 of film 1 is not
supplied by the problem, but its refractive in-
dex n1 is specified to be equal to nT . Identify
a combination {l1, n2} for which the full beam
irradiance is transmitted without any reflection.
(Any correct answer, properly justified, receives
full credit.)
Solution:

The right-to-left transfer matrix (Pedrotti2 Eq.
(19-24)) corresponding to a single film is propor-
tional to the unit matrix if the film thickness is
chosen to be 1

2
wavelength: adding such a film

has no effect on the reflectance of any film stack.
Therefore, if

l1 = λ1

2

n2 =
√

n0nT ,

the reflectance vanishes as in part (a.).


