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SOLUTION TO EXAMINATION 1

Directions: Do all 3 problems, which have unequal weight. This is a 50-minute closed-book closed-
note exam except for Griffiths, a copy of anything posted on the course web site, and anything in
your own handwriting (not a Xerox of someone else’s writing). Calculators, palmtops, laptops, and
cellphones should be turned off. Use a bluebook. Do not use scratch paper – otherwise you risk
losing part credit. Show all your work. Cross out rather than erase any work that you wish the
grader to ignore. Justify what you do. Express your answer in terms of the quantities specified in
the problem. Box or circle your answer. Without supplying additional proof, you may use the result

of any assigned problem-set problem.

Problem 1. (30 points)
A laser pointer has initial mass m0. With a
very advanced design, this laser pointer is able
to emit a blast of collinear photons whose en-
ergy is provided by a reduction of 0.01m0 in its
rest mass (no other energy is emitted). (Note
that up to 99 blasts are possible before its rest
mass is exhausted).

Approximately how many blasts will accelerate
the laser pointer to 96% of the speed of light?
Solution:
Applying the rocket equation

ηf − η0 = β1 ln
m0

mf

with β1 = 1 and η0 = 0, and taking m0/mf ≡ R,

βf = tanh ηf

0.96 = tanh (lnR)

=
exp (lnR) − exp (− lnR)

exp (lnR) + exp (− lnR)

=
R − 1/R

R + 1/R

0.96(R + 1/R) = R − 1/R

1.96/R = 0.04R

49 = R2

7 = R

.

The laser pointer rest mass needs to be reduced
by a factor of 7, to ≈ 14% of its original mass.
This requires 86 blasts.

Problem 2. (35 points)
A dielectric with permeability µ0 and dielectric

constant ǫ fills all space. It is uniform, except
that the region z > 0 is infused with a uniform
low density of free electrons whose sole effect
is to create a nonzero ohmic conductivity σ.
This conductivity is small in the sense that, for
frequencies ω of interest here, σ/(ǫω) ≪ 1.

A plane-wave packet of monochromatic EM radi-
ation, directed along ẑ, impinges on the interface
between the two media. For z < 0, as usual the
incident ~E and ~B are in phase – but for z > 0,
the transmitted ~B is observed to be out of phase
with the transmitted ~E by a small phase shift δ
(its sign is unimportant here).

In terms of δ, what fraction of the wave packet’s
energy is reflected by the interface? (Hint: use

Faraday’s law to solve for σ/(ǫω) in terms of δ.)
Solution:
Expressed in terms of complex fields Ẽ0 and B̃0,
Faraday’s law,

ik̃ × Ẽ0 = iωB̃0 ,

reveals that the phase shift between ~B and ~E
is simply the argument of k̃. According e.g. to
Griffiths Eq. (9.125-9.126),

arg(k̃) =
(

√

1 + γ2 − 1
√

1 + γ2 + 1

)1/2

,

where γ ≡ σ/(ǫω) ≪ 1. To lowest nonvanishing
order in γ, a Taylor expansion of this quotient
yields

arg(k̃) ≈ γ/2 .



Therefore γ ≈ 2δ.

The amplitude reflection coefficient is

r̃ =
Z̃−1

1
− Z̃−1

2

Z̃−1

1
+ Z̃−1

2

,

where the complex admittance Z̃−1 is propor-
tional to k̃ with the same constant of propor-
tionality in both regions. Again, by Taylor
expansion,

r̃ ≈ − iγ

4
.

(This is the result of Problem (-3.), which you
may use without additional proof.)

Therefore the energy or irradiance reflection co-
efficient is

R = |r̃|2 ≈ γ2

16
≈ δ2

4
.

Problem 3. (35 points)
In quark-antiquark (qq̄) annihilation, two pho-
tons are produced. In the qq̄ center of mass S ′,
the q (q̄) arrives along ẑ′ (-ẑ′) and the photons
γ1 and γ2 leave at polar angles θ′

1
= 60◦ and

θ′
2

= 120◦, measured with respect to the z′ axis.

Unfortunately, the q or q̄ are not beam particles,
but rather constituents of protons (p) or an-
tiprotons (p̄). Because the q and q̄ carry varying
fractions of the p and p̄ momentum, the qq̄ CM
system S ′ is boosted along ẑ′ = ẑ with respect
to the pp̄ (lab) system S.

In the lab, the second photon γ2 is observed to
emerge perpendicular to ẑ′ = ẑ: θ2 = π/2. At
what lab polar angle θ1 does the first photon
emerge? (It is immaterial whether you supply θ1

or 180◦ − θ1; you may leave trigonometric func-
tions unevaluated.)
Solution:
See Problem (20.). Because the longitudinal
rapidity y (the boost along z) is the additive pa-
rameter of a Lorentz transformation along z, the
rapidity difference ∆y between the two photons
is the same in the lab as it is in the CM:

∆y ≡ y1 − y2 = y′

1
− y′

2
.

Furthermore, for a particle like the photon that
travels at the speed of light, the rapidity and
pseudorapidity are the same:

y = − ln (tan θ
2
) .

In the CM,

y′

1
= −y′

2
= − ln (tan 60

◦

2
)

= − ln (1/
√

3)

∆y = −2 ln (1/
√

3) = ln 3 .

In the lab, y2 = 0 because the second photon
emerges perpendicular to the beam direction.
Therefore

ln 3 = y1

= − ln (tan θ1

2
)

1

3
= tan θ1

2

2 arctan 1

3
= θ1 = 36.9◦ .


