
Physics 105: Classical Mechanics, Sec. 2 (Strovink)

Final Review Session Solutions

by Peter Battaglino

Problem 1: Yukawa Force Orbit: A particle of mass m moves in a circle of radius R
under the influence of a central, attractive force

F = −K

r2
e−r/a,

where K and a are positive constants. (a) Determine the conditions on the constant a such
that the circular orbit is stable. (b) Compute the frequency of small radial oscillations about
this circular orbit.

Solution: (a) The condition for a stable circular orbit of radius R is that the effective
potential (as a function of r) has a minimum at R. The effective potential for a central force
problem has the form

Ueff(r) =
`2

2mr2
+ U(r),

where ` is the conserved angular momentum conjugate to the polar orbit angle θ, and U(r)
is the potential energy. You can derive this effective potential by eliminating θ̇ from the
Lagrangian in favor of ` and then using the transformation H = prṙ + `θ̇ − L and reading
off the terms in H that only depend on the coordinates. We can then express the conditions
for stable circular orbits as(

∂Ueff

∂r

)
r=R

= 0 and

(
∂2Ueff

∂r2

)
r=R

> 0.

The first derivative of the effective potential is

∂Ueff

∂r
= − `2

mr3
+

∂U

∂r
= − `2

mr3
− F (r),

where we used the fact that F (r) = −∂U/∂r. Evaluating this at r = R and moving things
around gives us the condition that

`2

m
= KRe−R/a.

This is just the condition that the orbit be a circle. For stability, we need the second
derivative, which is

∂2Ueff

∂r2
=

1

r4

[
3`2

m
−
(

2Kr +
Kr2

a

)
e−r/a

]
.
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Evaluating at r = R, using the relation found from the first condition, and enforcing that it
be positive gives us the result

1

R4

[
3`2

m
−
(

2`2

m
+

R

a

`2

m

)]
> 0,

which reduces to the constraint that R < a for stability.
(b) Letting r(t) = R+ε(t), where ε(t) has arbitrarily small amplitude, we can Taylor expand
the equation of motion for r and keep only first order terms in ε. Such a calculation will
always yield the result

mε̈ +

(
∂2Ueff

∂r2

)
ε=0

ε = 0.

Thus, our angular frequency is going to be equal to

ω =

√
1

m

(
∂2Ueff

∂r2

)
r=R

=
`

mR2

(
1− R

a

)1/2

.

Problem 2: Rotating Door: A uniform rectangular door of mass m with sides a and b
(b > a) and negligble thickness rotates with constant angular velocity ω about a diagonal.
Show that the torque

|~Γ| = m(b2 − a2)abω2

12(a2 + b2)

must be applied to keep the axis of rotation fixed.

Solution: Let’s write down Euler’s equations:

λ1ω̇1 − (λ2 − λ3)ω2ω3 = Γ1

λ2ω̇2 − (λ3 − λ1)ω3ω1 = Γ2

λ3ω̇3 − (λ1 − λ2)ω1ω2 = Γ3.

Since we’re holding the axis of the door’s rotation fixed, the angular velocity will remain
constant. Thus, ω̇1 = ω̇2 = ω̇3 = 0. In addition, the angular velocity will always point along
the axis of rotation, in the plane of the door. Letting ê1 and ê2 define the plane of the door,
we have ω3 = 0 for all time. Thus, we get from Euler’s equations that

Γ1 = 0

Γ2 = 0

Γ3 = (λ2 − λ1)ω1ω2.

The components ω1 and ω2 of the angular velocity are just the projections onto the ê1 and
ê2 basis vectors, respectively, which are

ω1 = ω
b√

a2 + b2
and ω2 = ω

a√
a2 + b2

.
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In your tenth homework assignment, you calculated the principal moments λ1 and λ2. They
are equal to ma2/12 and mb2/12, respectively. Putting it all together gives

Γ3 =
m(b2 − a2)ω2ab

12(a2 + b2)
.

Since the other two components of ~Γ are zero, we have |~Γ| = Γ3, so we are finished.

Problem 3: Rolling Plate: A plate idealized as a uniform disk of radius a with negligible
thickness and mass m rolls in a circle (imagine spinning a plate on a table and watching it
wobble, but without any energy dissipation). The center of mass of the plate C moves in a
circle of radius b and the axis of the plate is tilted at an angle θ with respect to the vertical.
Find the angular velocity Ω of the center of mass of the plate.

Solution: We will solve this problem by computing the torque on the plate exerted by the
table in two ways. One way is to calculate the force acting on the plate at its point of contact
and using the formula

~Γ = ~r × ~F .

Another way is to switch to a frame rotating with angular velocity Ω and use the fact that
the plate’s center of mass is fixed, yielding

~Γ =

(
d~L

dt

)
space

=

(
d~L

dt

)
rot

+ ~Ω× ~L = ~Ω× ~L.

This is because in the rotating frame we’ve chosen, the angular momentum is constant. For
the first method, we need the forces acting on the plate’s point of contact with the table.
One force is the normal force opposite the gravitational force, equal to mgẑ. The other is
the friction force opposing the centrifugal force caused by rotation of the center of mass with
frequency Ω. This force is equal to −mΩ2bŷ. The vector pointing from the plate’s center of
mass to the point of contact is equal to ~r = a sin θŷ − a cos θẑ. The torque will then be

~Γ = ~r × ~F = (mga sin θ − Ω2b cos θ)x̂.

For the second method, we need the vectors ~Ω and ~L. The vector ~Ω is given by

~Ω = −Ω cos θê1 − Ω sin θê3.

To find ~L, we need to know the inertia tensor of the plate and its total angular velocity. To
find its inertia tensor, we remember that for a thin lamina, I3 = I1 + I2, and that for a rigid
body with an azimuthal symmetry we have I1 = I2 (taking the ê3 axis to be the azimuthal
axis). The value of I3 is given by

I3 =
m

πa2

∫ a

0

r22πrdr =
1

2
ma2,
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so we have the values

I1 = I2 =
1

4
ma2.

The total angular velocity is the sum of the angular velocity in the rotating frame, ωê3, and
the angular velocity of that frame with respect to the space frame, ~Ω:

~ωtot = ~Ω + ωê3 = −Ω cos θê1 + (ω − Ω sin θ)ê3.

Now we can use the fact that ~L = I · ~ωtot to get

~L = −1

4
ma2Ω cos θê1 +

1

2
ma2(ω − Ω sin θ)ê3.

Then the cross product ~Ω× ~L is equal to

~Γ = ~Ω× ~L = ma2Ω2

[
1

4
sin θ cos θ +

1

2
cos θ

(ω

Ω
− sin θ

)]
ê2.

We can simplify this further by using the fact that the plate is rolling without slip, given by
the condition

ωa = Ω(b + a sin θ),

or
ω

Ω
=

b

a
+ sin θ.

This reduces our expression for the torque to

~Γ = ma2Ω2

[
1

4
sin θ cos θ +

1

2

b

a
cos θ

]
ê2.

Comparing this to the first equation for the torque and realizing that instantaneously, the
ê2 and ŷ axes are aligned, we can solve for Ω2 as

Ω2 =
4g tan θ

a sin θ + 6b
.

Problem 4: Coupled Oscillators in a Circle: Three pointlike objects of mass m
are distributed equidistant from one another on a circle of radius 1 (in appropriate units).
Between each pair of masses is a spring of constant k that lies along the circle. The masses
are constrained to move on the circle. Find the normal frequencies and modes of oscillation.
One of these modes is actually not oscillatory. Is there a way you could have simplified the
problem to ignore this mode from the start and only diagonalize a 2× 2 matrix?

Solution: We need to write down the K and M matrices for the system. We can do this by
looking at the coefficients of quadratic terms in the potential and kinetic energies. First we
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need some generalized coordinates. Choose θ1, θ2, and θ3 to be the angular displacements
from equilibrium of each mass. Then

T =
m

2
(θ̇2

1 + θ̇2
2 + θ̇2

3)

U =
k

2

(
(θ2 − θ1)

2 + (θ3 − θ2)
2 + (θ1 − θ3)

2
)

=
k

2
(2θ2

1 + 2θ2
2 + 2θ2

3 − 2θ1θ2 − 2θ2θ3 − 2θ3θ1).

Now we can readily write down the K and M matrices as

M = m

 1 0 0
0 1 0
0 0 1


K = k

 2 −1 −1
−1 2 −1
−1 −1 2

 .

We must now solve the eigenvalue problem det(K − ω2M) = 0. We can write the matrix
K − ω2M as

K − ω2M = k

 2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ

 ,

where λ = ω2m/k. Now we must solve for the roots of∣∣∣∣∣∣
2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ

∣∣∣∣∣∣ = 0.

We can expand the determinant and factor it as

λ(λ− 3)2 = 0.

This implies eigenfrequencies

ω1 = 0 and ω2 = ω3 =

√
3k

m
.

Thus, we have a zero mode and two degenerate modes. The zero mode should correspond
to rotations of the circle. Plugging in the value λ = 0 gives the equation 2 −1 −1

−1 2 −1
−1 −1 2

 α1

α2

α3

 = 0,
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which has the solution (α1, α2, α3) = (1, 1, 1). Thus we see that this is indeed a mode in
which all the masses rotate in unison around the circle. Plugging in λ = 3 gives the equation −1 −1 −1

−1 −1 −1
−1 −1 −1

 β1

β2

β3

 = 0,

which has the solution β1 +β2 +β3 = 0. We must now pick two normal modes which are or-
thogonal with respect to the inner productM∝ I and satisfy this condition. Although these
choices are not unique, one mode is (0, 1,−1). The second choice can then be (2,−1,−1).
You can check that these are orthogonal and both satisfy the condition β1 + β2 + β3 = 0.

In many situations, we will be able to pick out zero modes before we actually start to
solve the eigenvalue problem. In such a case, it may be advantageous to use our knowledge
to introduce a constraint among the generalized coordinates. In the case of this problem, the
zero mode corresponds to a constant, non-zero angular momentum. We can eliminate this
zero mode from our problem by restricting the angular momentum to be zero. This gives us
the condition θ̇1 + θ̇2 + θ̇3 = 0, which we can integrate to θ1 + θ2 + θ3 = 0. This allows us
to express, say, θ3 in terms of the coordinates θ1 and θ2. We can then insert this constraint
into our Lagrangian to reduce the original 3× 3 eigenvalue problem to a much simpler 2× 2
eigenvalue problem. The normal modes can then be computed as before, and we can just
use the equation θ3 = −(θ1 + θ2) to return to a description involving all three coordinates.
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