University of California, Berkeley
Physics 105 Fall 2006 Section 2 (Strovink)

ASSIGNMENT 11

Reading;:
sccM 14.4-14.6, 15.1
Taylor 16.4, 12.1-12.8

1. Taylor Problem 16.12.
2. Taylor Problem 16.13.

3. Consider a uniform cube of side L. Inside the
cube is a scalar field ¢ that satisfies the wave
equation with characteristic wavespeed c. At the
surfaces of the cube, ¢ is required to vanish.

(a)

Show that for this system the total number of
modes of vibration corresponding to frequen-
cies between v and v + dv is 4rL3v2dv/c3, if
me/L < dv L v.

(b)

What would the result be for a (two-dimensional)
square?

(c)

A (one-dimensional) rod?
4. Taylor Problem 12.16.

5. & 6. If a pendulum is started in motion, it
is possible for its amplitude of oscillation to be
increased by a bootstrap method in which the
pendulum’s own length [(¢) is varied periodically.

(a.)

Taking 6 and [ as generalized coordinates, write
the Lagrangian. Applying the Euler-Lagrange
equation in #, show that the equation of motion
(EOM) is

4oy 4 g0,

dt

(b.)

Substitute
1) =11+ 5(1)

where [ is an average value and §(t) averages to
zero. Scale to dimensionless time 7 = wot , where

w2 = g/l, and show that the EOM becomes

1+ 52)

1 =0.
I +(1+9)0=0

(c.)

Defining ¢ = 6I, show that the EOM becomes

1—-96

g.Z§+(1+6)¢:0'

(d.)

Taylor expanding 1/(1 + §) and retaining the
lowest-order terms in § and 9, show that the
EOM becomes

¢+¢=(00+0)¢.
(e.)
Now tune the frequency of §, the perturbation
on [, to the parametric resonance frequency 2wy:

d(T) = dp cos 27 .

Write ¢ as the sum of a constant-/ solution with
amplitude A and a perturbation term that is of
order dp:

¢ = Al(0) cosT 4+ O(dy) -
Using the trig identity
cos T cos 2T = 1 (cosT + cos37) ,
show that, to first order in §y, the EOM becomes
b+ ¢ = —360Al(0)(cos T + cos 37) .

()

The homogeneous solution to this equation is

¢ = Bsint 4+ CcosT ,



where the constants B and C are (eventually)
fixed by the initial conditions. The particular
solution to the same equation is the sum of ¢
and ¢3, where

¢1 + 1 = —380Al(0) cos T

q.b'g + qbg = —%50Al(0) cos 3T .
First solve the equation for ¢3, by substituting
¢3 = D cos 37, and evaluate D. Then solve the
equation for ¢;. Note that a similar solution
¢1 = EcosT will fail because the left-hand side
will vanish. Instead, using clairvoyance, attempt

a solution of the form ¢; = F'7sinT and evaluate
F.

(g)
Show that the general solution is
¢ = BsinT+ CcosT
+ 0o Al(0) (S cos 3T — 37sinT) .
(h.)

Finally, adjust B and C to satisfy the initial

conditions
¢(0) = Al(0)

$(0) = 0.

You should obtain the complete solution

¢(r) = AL(0)(1 -
+ 13 Al(0)do cos 3T — + Al(0)doT sin T .

3
Eéo) COS T

Indeed the magnitude of the coefficient of sin T
in the last term increases linearly with time.

This is one model of how a child pumps a swing
— without realizing, of course, that a parametric
resonance is excited.

7. Consider a double pendulum with equal
lengths and masses (Taylor Fig. 11.10). Using
¢1 and ¢3 = ¢ — @1 as generalized coordinates,
making no approximations,

(a.)

Write the Lagrangian.

(b.)

Write the Hamiltonian.

(c.)

Define the canonical momenta {; and 5.

(d.)
Reéxpress the Hamiltonian in terms of ¢1, ¢3,
l1, and [3.

(e.)

Write out all four of Hamilton’s equations. (Be-
cause of their first-order character, these equa-
tions are the preferred starting point for numer-
ical solution of the equations of motion for this
simple but nevertheless nonlinear and chaotic
system.)



