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ASSIGNMENT 11

Reading:
sccm 14.4-14.6, 15.1
Taylor 16.4, 12.1-12.8

1. Taylor Problem 16.12.

2. Taylor Problem 16.13.

3. Consider a uniform cube of side L. Inside the
cube is a scalar field φ that satisfies the wave
equation with characteristic wavespeed c. At the
surfaces of the cube, φ is required to vanish.
(a)
Show that for this system the total number of
modes of vibration corresponding to frequen-
cies between ν and ν + dν is 4πL3ν2dν/c3, if
πc/L � dν � ν.
(b)
What would the result be for a (two-dimensional)
square?
(c)
A (one-dimensional) rod?

4. Taylor Problem 12.16.

5. & 6. If a pendulum is started in motion, it
is possible for its amplitude of oscillation to be
increased by a bootstrap method in which the
pendulum’s own length l(t) is varied periodically.

(a.)
Taking θ and l as generalized coordinates, write
the Lagrangian. Applying the Euler-Lagrange
equation in θ, show that the equation of motion
(eom) is

d
dt

(l2θ̇) + glθ = 0 .

(b.)
Substitute

l(t) ≡ l̄
(
1 + δ(t)

)
,

where l̄ is an average value and δ(t) averages to
zero. Scale to dimensionless time τ ≡ ω0t , where

ω2
0 ≡ g/l̄ , and show that the eom becomes

d
dτ

(
(1 + δ)2θ̇

)
+ (1 + δ)θ = 0 .

(c.)
Defining φ ≡ θl, show that the eom becomes

φ̈ +
(1 − δ̈

1 + δ

)
φ = 0 .

(d.)
Taylor expanding 1/(1 + δ) and retaining the
lowest-order terms in δ and δ̈, show that the
eom becomes

φ̈ + φ = (δ + δ̈)φ .

(e.)
Now tune the frequency of δ, the perturbation
on l, to the parametric resonance frequency 2ω0:

δ(τ) = δ0 cos 2τ .

Write φ as the sum of a constant-l solution with
amplitude A and a perturbation term that is of
order δ0:

φ ≡ Al(0) cos τ + O(δ0) .

Using the trig identity

cos τ cos 2τ = 1
2 (cos τ + cos 3τ) ,

show that, to first order in δ0, the eom becomes

φ̈ + φ = − 3
2δ0Al(0)(cos τ + cos 3τ) .

(f.)
The homogeneous solution to this equation is

φh = B sin τ + C cos τ ,



where the constants B and C are (eventually)
fixed by the initial conditions. The particular
solution to the same equation is the sum of φ1

and φ3, where

φ̈1 + φ1 = − 3
2δ0Al(0) cos τ

φ̈3 + φ3 = − 3
2δ0Al(0) cos 3τ .

First solve the equation for φ3, by substituting
φ3 = D cos 3τ , and evaluate D. Then solve the
equation for φ1. Note that a similar solution
φ1 = E cos τ will fail because the left-hand side
will vanish. Instead, using clairvoyance, attempt
a solution of the form φ1 = Fτ sin τ and evaluate
F .

(g.)
Show that the general solution is

φ = B sin τ + C cos τ

+ δ0Al(0)( 3
16 cos 3τ − 3

4τ sin τ) .

(h.)
Finally, adjust B and C to satisfy the initial
conditions

φ(0) = Al(0)

φ̇(0) = 0 .

You should obtain the complete solution

φ(τ) = Al(0)
(
1 − 3

16δ0

)
cos τ

+ 3
16Al(0)δ0 cos 3τ − 1

4Al(0)δ0τ sin τ .

Indeed the magnitude of the coefficient of sin τ
in the last term increases linearly with time.

This is one model of how a child pumps a swing
– without realizing, of course, that a parametric
resonance is excited.

7. Consider a double pendulum with equal
lengths and masses (Taylor Fig. 11.10). Using
φ1 and φ3 ≡ φ2 − φ1 as generalized coordinates,
making no approximations,

(a.)
Write the Lagrangian.

(b.)
Write the Hamiltonian.

(c.)
Define the canonical momenta l1 and l3.

(d.)
Reëxpress the Hamiltonian in terms of φ1, φ3,
l1, and l3.

(e.)
Write out all four of Hamilton’s equations. (Be-
cause of their first-order character, these equa-
tions are the preferred starting point for numer-
ical solution of the equations of motion for this
simple but nevertheless nonlinear and chaotic
system.)


