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Physics 105 Fall 2006 Section 2 (Strovink)

ASSIGNMENT 10

Reading:
sccm 12.1-12.6, 13.1-13.3, 14.1-14.3
Taylor 11.1-11.7, 16.1-16.3

1. Considering once more the shock-absorberless
El Dorado in Wim Wenders’ & Sam Shepard’s
Paris, Texas (Cannes 1984 Palme d’Or), con-
tinue to model it as a thin horizontal rectan-
gular plate of mass m, length l and width w,
supported by four identical springs of constant k
at the corners. Let’s make a clairvoyant choice
of general coordinates: q1 is the CM height, q2 is
the angle of ccw rotation about the short bisec-
tor, and q3 is the angle of ccw rotation about
the long bisector. All three coordinates vanish
at equilibrium, with |q2| and |q3| both � 1.

(a.)
In terms of the qi, write down the M and K
matrices. From their form, show that the cho-
sen general coordinates are proportional to the
normal coordinates.

(b.)
Find the natural frequencies of oscillation and
show that two of them are degenerate.

(c.)
A pair of potholes set the Eldo into oscillatory
rotation about an arbitrary horizontal axis pass-
ing through its CM. Discuss its ensuing motion.

2. As a warmup for the double pendulum prob-
lems that follow, use Lagrangian methods to
obtain the equation of motion for a single driven
upright pendulum. It consists of a bob (mass m)
supported by a massless stick (length h) pivoted
on a support that moves vertically according to
Y (t) = Y0 cos Ωt . The stick makes a ccw angle
ψ with the vertical direction, measured from the
top: when ψ = 0, the bob is upright.

(a.)
Using ψ and Y as generalized coordinates, write
the Lagrangian.

(b.)
Write the Euler-Lagrange equation in ψ, then
plug in Y (t) = Y0 cos Ωt .

(c.)
Beautify this equation by introducing the pa-
rameters a ≡ (2ω0/Ω)2 and q ≡ 2Y0/h, where
ω2

0 ≡ g/h. Also introduce the “scaled time” τ =
Ωt/2. You should obtain the Mathieu equation

d2ψ

dτ2
− (a− 2q cos 2τ) sinψ = 0 .

When we discuss parametric resonance in lec-
ture, we will show that the upright pendulum
is stable if Ω � ω0 and q2 > 2a, that is if the
support vibrates very fast with amplitude no
smaller than a fraction

√
2ω0/Ω of h.

3. Taylor Problem 11.15.

4. Taylor Problem 11.16.

5. Taylor Problem 11.19.

6. Taylor Problem 16.9.

7. A long narrow rectangular membrane, when
undisturbed, lies in the x-y plane; x̂ is its long
direction and ŷ is its short direction. The mem-
brane’s displacement normal to the x-y plane is
denoted by z(x, y, t). The membrane is clamped
at its long edges y = 0 and y = b, so that

z(x, 0, t) = z(x, b, t) = 0 .

Consider the propagation of traveling sinusoidal
waves z(x, y, t) in the long direction x̂.

(a.)
The Lagrangian density L′ (per unit area of



membrane) is given by
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where σ is the membrane’s mass per unit area,
and β is a positive constant that is inversely
proportional to its elasticity. Apply the Euler-
Lagange equations to this Lagrangian density to
obtain a partial differential equation for z(x, y, t).

(b.)
Search for a trial solution in the form

z(x, y, t) = Y (y) cos (kxx− ωt) ,

where Y (y) is a function only of y, and kx and
ω are constants that are not yet specified. Plug
this solution into the equation you obtained for
(a.). Dividing through by cos (kxx− ωt), obtain
an ordinary differential equation for Y (y).

(c.)
Applying the boundary conditions z(x, 0, t) =
z(x, b, t) = 0, identify and choose a (non null)
solution for Y (y) which has the most gradual
dependence on y that is possible given these
conditions.

(d.)
Returning to the equation you obtained for (a.),
plug in your answer to (c.) to obtain an equation
relating kx and ω.

(e.)
What is the minimum frequency ωmin of sinu-
soidal waves that can propagate in the x̂ direc-
tion without attenuation?

(f.)
If ω =

√
2ωmin, calculate the phase velocity

ω/kx with which sinusoidal waves propagate in
the x̂ direction.


